ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Dec 02, 2022 21:00 JST
Source:
Science and Technology of Advanced Materials
Revealing crystal structures robotically
Machine learning and robotic process automation combine to speed up and simplify a process used to determine crystal structures.
TSUKUBA, Japan, Dec 02, 2022 - (ACN Newswire) - Researchers at the National Institute for Materials Science (NIMS) in Japan have automated a complex and labour-intensive process for analysing the results of X-ray diffraction studies, which are used to determine the structure of crystalline materials. The team described the development and application of their technique in the journal Science and Technology of Advanced Materials: Methods.
By combining machine learning with robotic process automation, researchers automated a mathematical procedure that determines the structure of crystalline materials. (Credit: ktsdesign/123rf)
X-rays fired at a crystal interact with the geometric arrangement of its particles and are diffracted in many directions in a complex pattern of rays that depends on the crystal's precise structure. Experts analyse the pattern and intensity of the diffracted X-rays to determine the crystal's internal arrangement. This is a powerful and widely used process for revealing the three-dimensional atomic structure of new materials.
A well-established mathematical procedure, called Rietveld analysis, is used for interpreting X-ray diffraction data, but it is time-consuming and requires manual trial-and-error refinement of the results.
"To reduce human costs and resources, we have developed a robotic process automation (RPA) system that we apply to an existing Rietveld analysis program called RIETAN-FP," says Ryo Tamura of the NIMS team. "By using our new procedure, with the help of machine learning, we have succeeded in performing Rietveld analysis automatically," Tamura adds.
The automation can be run on a personal computer and can reduce human error as well as greatly speed up the data analysis.
Tamura explains that the field of materials science already relies on numerous graphical user interface (GUI) applications to calculate a material's properties, control experimental equipment, or analyse material data. He says that combining this new RPA and machine learning ability with these applications achieves a "closed loop" to automatically design and analyse materials with minimal human intervention.
The researchers verified the accuracy of their procedure by analysing samples of powdered compounds whose crystal structures are already known. The ability to determine the structures from powdered samples is one of the great strengths of Rietveld analysis. It avoids the need to grow large single crystals, which can be extremely difficult to obtain for some materials.
"Automating Rietveld analysis brings a very powerful new tool into the entire field of materials science," Tamura concludes.
The researchers are now working to further refine their procedure to make it suitable for more complex crystal structures. Another aim is to explore the use of their machine learning RPA strategy for more general applications in materials science. The possibilities include numerous simulation methods used for calculating material properties, and also applications for controlling experimental equipment. The success achieved thus far with X-ray diffraction could just be the start for Rietveld robotics.
Further information
Ryo Tamura
National Institute for Materials Science
Email:
tamura.ryo@nims.go.jp
About Science and Technology of Advanced Materials: Methods (STAM Methods)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr. Yasufumi Nakamichi
STAM Methods Publishing Director
Email:
NAKAMICHI.Yasufumi@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech
Copyright ©2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
myBillBook Leverages CleverTap to Elevate Customer Engagement and Drive Revenue Growth
Nov 14, 2024 20:00 JST
ULVAC Launches Oil Rotary Vacuum Pump Gv135
Nov 14, 2024 10:00 JST
MHI Publishes MHI REPORT 2024
Nov 13, 2024 16:52 JST
SoftBank Corp. and Fujitsu Strengthen Partnership for Realization of AI-RAN Commercialization
Nov 13, 2024 12:38 JST
Predictive Heart Monitoring Startup, GPx, Secures New Investment From NEC X; Joins Elev X! Boost Venture Studio Program
Nov 13, 2024 12:05 JST
NEC receives order for next-generation supercomputer system from Japan's National Institutes for Quantum Science and Technology and National Institute for Fusion Science
Nov 13, 2024 11:16 JST
All-New Triton Wins Special Award at the RJC Car of the Year for 2025
Nov 12, 2024 22:09 JST
Toyota: HySE to participate in the Dakar 2025 "Mission 1000 ACT2" with the HySE-X2, to tackle further technical challenges
Nov 12, 2024 20:04 JST
NEC participates in COP29 climate change conference
Nov 12, 2024 19:25 JST
JA Mitsui Leasing and Fujitsu collaborate on simulation-driven field trials to optimize commercial EV adoption and drive decarbonization
Nov 12, 2024 13:57 JST
Macnica publishes Integrated Report on the theme of 'An Introductory Guide to Macnica's Mechanism'
Nov 12, 2024 13:00 JST
Hitachi: Established the Open Source Program Office (OSPO) to Globally Lead the Strategic Utilization of OSS
Nov 11, 2024 10:31 JST
Transgene and NEC Present New Data Confirming Clinical Proof of Principle for Neoantigen Cancer Vaccine, TG4050, in Head & Neck Cancer at SITC 2024
Nov 08, 2024 10:31 JST
Hitachi High-Tech and University of Tokyo Promote Joint Research for the Practical Application of High-resolution Laser-PEEM in the Semiconductor Field
Nov 07, 2024 18:19 JST
Mitsubishi Motors Acquires Its Own Shares from Nissan
Nov 07, 2024 17:20 JST
Honda Signs Sponsorship Agreement to Provide Electrified Vehicles at World Athletics Championships Tokyo 25
Nov 07, 2024 17:10 JST
Home of Fujitsu joint conservation project designated as first Nationally Certified Sustainably Managed Natural Site in Okinawa
Nov 07, 2024 14:51 JST
NEC and NEC Bio publish foundational work on T Cell Receptor engineering using proprietary generative AI at the Society for Immunotherapy of Cancer annual meeting
Nov 07, 2024 11:40 JST
Anime Tokyo Station 1st Anniversary Event: Celebrating one year since the opening of the new hub for sharing Japanese anime
Nov 07, 2024 11:00 JST
57% of Banking Executives Struggle with Data Silos, Blocking AI-Driven Personalization, CleverTap's New Report Highlights
Nov 06, 2024 15:30 JST
More Latest Release >>
Related Release
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
Closing the loop between artificial intelligence and robotic experiments
August 24 2023 09:00 JST
More Press release >>