ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Nov 08, 2022 00:00 JST
Source:
Science and Technology of Advanced Materials
New data extracted from old for materials databases
Scientists in Japan have combined two computational models to extract more data on steel alloys from a single test, with implications for the discovery of new materials.
TSUKUBA, Japan, Nov 07, 2022 - (ACN Newswire) - A new approach uses data from one type of test on small metal alloy samples to extract enough information for building databases that can be used to predict the properties and potentials of new materials. The details were published in the journal Science and Technology of Advanced Materials: Methods.
The scientists used computer simulations to build database of material properties.
The Scientists found a way to use topography around indentation impression to predict other properties measured by a tensile or compression test.
The test is called instrumented indentation. It involves driving an indenter tip into a material to probe some of its properties, such as hardness and elastic stiffness. Scientists have been using the data extracted from instrumented indentation to estimate the stress-strain curve of materials using computational simulations. This curve, and the data it provides, is important for understanding a material's properties. That data is also used for building massive materials databases, which can be used, in conjunction with artificial intelligence, for predicting new materials.
A problem scientists face is that this approach for estimating material properties is limited when it comes to materials called 'high work-hardening alloys': metal alloys, like steel, that are strengthened through physical processes like rolling and forging. Only so much information can be estimated from the curve of these materials. To get the necessary additional information needed to determine their properties, more experiments would need to be done, which costs time, effort and money.
Ta-Te Chen of the University of Tsukuba and Ikumu Watanabe of the National Institute for Materials Science in Japan have developed a new computational approach to extract that additional information from instrumented indentation tests on work-hardening alloys.
"Our approach builds on an already-existing model, making it ready for use in industry. It is also applicable to existing data, including hardness," says Watanabe.
The approach involves combining the results from two computational models, the power-law and linear hardening models, which produce their own individual stress-plastic strain curves from information gathered from indentation tests. Combining the data from both curves provides the extra data that, when added to the original stress-strain curve, shows a more holistic picture of the work-hardening alloys' properties.
The scientists validated their approach by using it on a high-work-hardening stainless steel.
We have extended this approach to also evaluate mechanical properties at elevated temperatures, which can contribute to the development of high-temperature alloys," says Chen.
Further information
Ikumu Watanabe
National Institute for Materials Science
Email:
WATANABE.Ikumu@nims.go.jp
About Science and Technology of Advanced Materials: Methods (STAM Methods)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr. Yasufumi Nakamichi
STAM Methods Publishing Director
Email:
NAKAMICHI.Yasufumi@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Science & Nanotech, Science & Research
Copyright ©2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Honda Introduces AI-powered Social Robot, Haru, to University Hospital in Spain
Dec 02, 2024 23:08 JST
DENSO to Exhibit at "Automechanika Dubai 2024"
Dec 02, 2024 22:38 JST
Fujitsu expands global strategic collaboration agreement with AWS to promote customer digital transformation across industries
Dec 02, 2024 22:07 JST
MHI Receives Order to Supply 24 MOX Fuel Assemblies for Unit 3 of Ikata Nuclear Power Station, Shikoku Electric Power Co. Inc.
Dec 02, 2024 12:55 JST
MHI Receives Order from Taiwan High Speed Rail Corporation for Trackwork and Core System for New Rolling Stock Inspection Shop in Zuoying Depot
Dec 02, 2024 12:21 JST
ULVAC Launches New Deposition System for Semiconductor Applications: Model "ENTRON-EXX"
Dec 02, 2024 09:10 JST
Launch of Demonstration Test for CO2 Capture from Chemical Recovery Boilers at Paper Mills in Japan
Nov 29, 2024 19:11 JST
Mitsubishi Electric's Swedish Subsidiary Signs a Share Transfer Agreement to Wholly Acquire Norwegian Elevator Company ALT Heis
Nov 29, 2024 15:30 JST
JAL and NEC Test AI-Powered Carry-On Baggage Analysis Solution
Nov 29, 2024 15:27 JST
Hitachi Energy to integrate ScottishPower wind farm to power almost one million homes in the United Kingdom
Nov 29, 2024 12:54 JST
TGR Announces Partially Upgraded Supra (3.0-liter) and Special-edition Supra "A90 Final Edition"
Nov 29, 2024 11:22 JST
Hitachi Receives an Order for All 147 Elevators and Escalators for the Second Phase of the Taipei MRT Wanda-Zhonghe-Shulin Line
Nov 28, 2024 22:20 JST
MHI Successfully Achieves 1,200 Hour Long-Term Durability Test Milestone on 90 MPa-Class Ultra-High-Pressure Liquid Hydrogen Booster Pump
Nov 28, 2024 20:58 JST
"LEQEMBI" (Lecanemab) for the Treatment of Alzheimer's Disease Launched in South Korea
Nov 28, 2024 16:26 JST
Hitachi High-Tech Launches DCR Etch System 9060 Series, Supporting Isotropic Etching of Advanced 3D Devices at the Atomic Level
Nov 28, 2024 11:31 JST
MHI Delivers Final Trainset of Automated Guideway Transit System "2020 Series" to Saitama New Urban Transit
Nov 28, 2024 10:08 JST
TOPVISION Launches Prospectus for Listing Transfer from LEAP to the ACE Market
Nov 27, 2024 05:53 JST
TOYOTA GAZOO Racing FULLY PREPARED FOR DAKAR 2025
Nov 26, 2024 17:55 JST
Eisai Signs Research Collaboration Agreement with The National Center of Neurology and Psychiatry to Initiate Apolipoprotein E Genetic Testing in the "AD-DMT Registry" in Japan
Nov 26, 2024 15:50 JST
Fujitsu develops Policy Twin, a new digital twin technology to maximize effectiveness of local government policies for solving societal issues
Nov 26, 2024 10:51 JST
More Latest Release >>
Related Release
Machine learning used to optimise polymer production
December 02 2024 17:00 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
More Press release >>