ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Nov 08, 2022 00:00 JST
Source:
Science and Technology of Advanced Materials
New data extracted from old for materials databases
Scientists in Japan have combined two computational models to extract more data on steel alloys from a single test, with implications for the discovery of new materials.
TSUKUBA, Japan, Nov 07, 2022 - (ACN Newswire) - A new approach uses data from one type of test on small metal alloy samples to extract enough information for building databases that can be used to predict the properties and potentials of new materials. The details were published in the journal Science and Technology of Advanced Materials: Methods.
The scientists used computer simulations to build database of material properties.
The Scientists found a way to use topography around indentation impression to predict other properties measured by a tensile or compression test.
The test is called instrumented indentation. It involves driving an indenter tip into a material to probe some of its properties, such as hardness and elastic stiffness. Scientists have been using the data extracted from instrumented indentation to estimate the stress-strain curve of materials using computational simulations. This curve, and the data it provides, is important for understanding a material's properties. That data is also used for building massive materials databases, which can be used, in conjunction with artificial intelligence, for predicting new materials.
A problem scientists face is that this approach for estimating material properties is limited when it comes to materials called 'high work-hardening alloys': metal alloys, like steel, that are strengthened through physical processes like rolling and forging. Only so much information can be estimated from the curve of these materials. To get the necessary additional information needed to determine their properties, more experiments would need to be done, which costs time, effort and money.
Ta-Te Chen of the University of Tsukuba and Ikumu Watanabe of the National Institute for Materials Science in Japan have developed a new computational approach to extract that additional information from instrumented indentation tests on work-hardening alloys.
"Our approach builds on an already-existing model, making it ready for use in industry. It is also applicable to existing data, including hardness," says Watanabe.
The approach involves combining the results from two computational models, the power-law and linear hardening models, which produce their own individual stress-plastic strain curves from information gathered from indentation tests. Combining the data from both curves provides the extra data that, when added to the original stress-strain curve, shows a more holistic picture of the work-hardening alloys' properties.
The scientists validated their approach by using it on a high-work-hardening stainless steel.
We have extended this approach to also evaluate mechanical properties at elevated temperatures, which can contribute to the development of high-temperature alloys," says Chen.
Further information
Ikumu Watanabe
National Institute for Materials Science
Email:
WATANABE.Ikumu@nims.go.jp
About Science and Technology of Advanced Materials: Methods (STAM Methods)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr. Yasufumi Nakamichi
STAM Methods Publishing Director
Email:
NAKAMICHI.Yasufumi@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Science & Nanotech, Science & Research
Copyright ©2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
myBillBook Leverages CleverTap to Elevate Customer Engagement and Drive Revenue Growth
Nov 14, 2024 20:00 JST
ULVAC Launches Oil Rotary Vacuum Pump Gv135
Nov 14, 2024 10:00 JST
MHI Publishes MHI REPORT 2024
Nov 13, 2024 16:52 JST
SoftBank Corp. and Fujitsu Strengthen Partnership for Realization of AI-RAN Commercialization
Nov 13, 2024 12:38 JST
Predictive Heart Monitoring Startup, GPx, Secures New Investment From NEC X; Joins Elev X! Boost Venture Studio Program
Nov 13, 2024 12:05 JST
NEC receives order for next-generation supercomputer system from Japan's National Institutes for Quantum Science and Technology and National Institute for Fusion Science
Nov 13, 2024 11:16 JST
All-New Triton Wins Special Award at the RJC Car of the Year for 2025
Nov 12, 2024 22:09 JST
Toyota: HySE to participate in the Dakar 2025 "Mission 1000 ACT2" with the HySE-X2, to tackle further technical challenges
Nov 12, 2024 20:04 JST
NEC participates in COP29 climate change conference
Nov 12, 2024 19:25 JST
JA Mitsui Leasing and Fujitsu collaborate on simulation-driven field trials to optimize commercial EV adoption and drive decarbonization
Nov 12, 2024 13:57 JST
Macnica publishes Integrated Report on the theme of 'An Introductory Guide to Macnica's Mechanism'
Nov 12, 2024 13:00 JST
Hitachi: Established the Open Source Program Office (OSPO) to Globally Lead the Strategic Utilization of OSS
Nov 11, 2024 10:31 JST
Transgene and NEC Present New Data Confirming Clinical Proof of Principle for Neoantigen Cancer Vaccine, TG4050, in Head & Neck Cancer at SITC 2024
Nov 08, 2024 10:31 JST
Hitachi High-Tech and University of Tokyo Promote Joint Research for the Practical Application of High-resolution Laser-PEEM in the Semiconductor Field
Nov 07, 2024 18:19 JST
Mitsubishi Motors Acquires Its Own Shares from Nissan
Nov 07, 2024 17:20 JST
Honda Signs Sponsorship Agreement to Provide Electrified Vehicles at World Athletics Championships Tokyo 25
Nov 07, 2024 17:10 JST
Home of Fujitsu joint conservation project designated as first Nationally Certified Sustainably Managed Natural Site in Okinawa
Nov 07, 2024 14:51 JST
NEC and NEC Bio publish foundational work on T Cell Receptor engineering using proprietary generative AI at the Society for Immunotherapy of Cancer annual meeting
Nov 07, 2024 11:40 JST
Anime Tokyo Station 1st Anniversary Event: Celebrating one year since the opening of the new hub for sharing Japanese anime
Nov 07, 2024 11:00 JST
57% of Banking Executives Struggle with Data Silos, Blocking AI-Driven Personalization, CleverTap's New Report Highlights
Nov 06, 2024 15:30 JST
More Latest Release >>
Related Release
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
Closing the loop between artificial intelligence and robotic experiments
August 24 2023 09:00 JST
More Press release >>