ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Jun 27, 2022 18:00 JST
Source:
Science and Technology of Advanced Materials
Novel patching material for bone defects
Scientists at Tokyo Medical and Dental University have discovered a new type of bone repairing material that could be used to more precisely fix bone defects.
TSUKUBA, Japan, Jun 27, 2022 - (ACN Newswire) - Ceramics and metals have been used for a while as structural materials to repair bones and joints. In the past, scientists engineered bioinert materials, which do not bond to bones directly; bioactive materials that can bond to bones; and bio-absorbable materials that are categorized in bioactive materials but they are absorbed by the body over time and are replaced by advancing bone tissue.
A new bio-responsive ceramic can be used to repair bone defects
With an enzyme found in blood, different types of salts were converted to hydroxyapatite, a bone mineral
Now, a fourth type of bone repairing materials has been found: a bio-responsive ceramic that interacts with an enzyme found in blood to be absorbed into the body at a precise and predictable rate.
The research was done by Taishi Yokoi, an associate professor at the Institute of Biomaterials and Bioengineering at Tokyo Medical and Dental University, and his colleagues. The study was published in May in Science and Technology of Advanced Materials.
"Extending healthy life expectancy is an important issue for all of us," Yokoi says. "Bone repairing materials aid in the recovery of bone defects and help improve quality of life."
At the heart of this discovery is a biological reaction: an enzyme called alkaline phosphatase (ALP), which is present in human serum and reacts with various phosphate esters to generate bone mineral known as hydroxyapatite.
The scientists mimicked this process using a simulated body fluid that contained the enzyme ALP. They placed four different salts in a simulated body fluid containing or lacking the enzyme ALP. The salts were calcium salts of methyl phosphate (CaMeP), ethyl phosphate (CaEtP), butyl phosphate (CaBuP) and dodecyl phosphate (CaDoP). The phosphate component of each of these salts has an alkyl group at its end - a chain composed of hydrogen and carbon atoms - of differing lengths.
The scientists found that the first three salts were converted to hydroxyapatite, but only in the presence of ALP. Interestingly, the length of the alkyl group on the phosphate ester determined the rate at which this reaction happens. With more research, the scientists think that this could allow greater control of the bone healing process in the body.
"We expect the findings of this study will be applied towards designing and developing novel bone-repairing materials with precisely controlled degradation and resorption rates inside the body," says Yokoi.
Further information
Taishi Yokoi
Tokyo Medical and Dental University
Email:
yokoi.taishi.bcr@tmd.ac.jp
Research paper:
https://www.tandfonline.com/doi/full/10.1080/14686996.2022.2074801
About Science and Technology of Advanced Materials (STAM)
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
https://www.tandfonline.com/STAM
Mikiko Tanifuji
STAM Publishing Director
Email:
TANIFUJI.Mikiko@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech, BioTech, Healthcare & Pharm
Copyright ©2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Honda Introduces AI-powered Social Robot, Haru, to University Hospital in Spain
Dec 02, 2024 23:08 JST
DENSO to Exhibit at "Automechanika Dubai 2024"
Dec 02, 2024 22:38 JST
Fujitsu expands global strategic collaboration agreement with AWS to promote customer digital transformation across industries
Dec 02, 2024 22:07 JST
MHI Receives Order to Supply 24 MOX Fuel Assemblies for Unit 3 of Ikata Nuclear Power Station, Shikoku Electric Power Co. Inc.
Dec 02, 2024 12:55 JST
MHI Receives Order from Taiwan High Speed Rail Corporation for Trackwork and Core System for New Rolling Stock Inspection Shop in Zuoying Depot
Dec 02, 2024 12:21 JST
ULVAC Launches New Deposition System for Semiconductor Applications: Model "ENTRON-EXX"
Dec 02, 2024 09:10 JST
Launch of Demonstration Test for CO2 Capture from Chemical Recovery Boilers at Paper Mills in Japan
Nov 29, 2024 19:11 JST
Mitsubishi Electric's Swedish Subsidiary Signs a Share Transfer Agreement to Wholly Acquire Norwegian Elevator Company ALT Heis
Nov 29, 2024 15:30 JST
JAL and NEC Test AI-Powered Carry-On Baggage Analysis Solution
Nov 29, 2024 15:27 JST
Hitachi Energy to integrate ScottishPower wind farm to power almost one million homes in the United Kingdom
Nov 29, 2024 12:54 JST
TGR Announces Partially Upgraded Supra (3.0-liter) and Special-edition Supra "A90 Final Edition"
Nov 29, 2024 11:22 JST
Hitachi Receives an Order for All 147 Elevators and Escalators for the Second Phase of the Taipei MRT Wanda-Zhonghe-Shulin Line
Nov 28, 2024 22:20 JST
MHI Successfully Achieves 1,200 Hour Long-Term Durability Test Milestone on 90 MPa-Class Ultra-High-Pressure Liquid Hydrogen Booster Pump
Nov 28, 2024 20:58 JST
"LEQEMBI" (Lecanemab) for the Treatment of Alzheimer's Disease Launched in South Korea
Nov 28, 2024 16:26 JST
Hitachi High-Tech Launches DCR Etch System 9060 Series, Supporting Isotropic Etching of Advanced 3D Devices at the Atomic Level
Nov 28, 2024 11:31 JST
MHI Delivers Final Trainset of Automated Guideway Transit System "2020 Series" to Saitama New Urban Transit
Nov 28, 2024 10:08 JST
TOPVISION Launches Prospectus for Listing Transfer from LEAP to the ACE Market
Nov 27, 2024 05:53 JST
TOYOTA GAZOO Racing FULLY PREPARED FOR DAKAR 2025
Nov 26, 2024 17:55 JST
Eisai Signs Research Collaboration Agreement with The National Center of Neurology and Psychiatry to Initiate Apolipoprotein E Genetic Testing in the "AD-DMT Registry" in Japan
Nov 26, 2024 15:50 JST
Fujitsu develops Policy Twin, a new digital twin technology to maximize effectiveness of local government policies for solving societal issues
Nov 26, 2024 10:51 JST
More Latest Release >>
Related Release
Machine learning used to optimise polymer production
December 02 2024 17:00 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
More Press release >>