ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
May 25, 2022 18:00 JST
Source:
Science and Technology of Advanced Materials
Machine learning speeds up search for new sustainable materials
A model that rapidly searches through large numbers of materials could find sustainable alternatives to existing composites.
TSUKUBA, Japan, May 25, 2022 - (ACN Newswire) - Researchers from Konica Minolta and the Nara Institute of Science and Technology in Japan have developed a machine learning method to identify sustainable alternatives for composite materials. Their findings were published in the journal Science and Technology of Advanced Materials: Methods.
Researchers are looking for sustainable options, such as recyclable materials or biomass, to substitute the constituent materials in composites which are used in various applications including electrical and information technologies.
Composite materials are compounds made of two or more constituent materials. Due to the complex nature of the interactions between the different components, their performance can greatly exceed that of single materials. Composite materials, such as fibre-reinforced plastics, are very important for a wide range of industries and applications, including electrical and information technologies.
In recent years, there has been increasing demand for more environmentally sustainable materials that help reduce industrial waste and plastic use. One way to achieve this is to substitute the constituent materials in composites with recyclable materials or biomass. However, this can reduce performance compared to the original material, not only due to the features of the individual constituent materials, such as their physicochemical properties, but also due to the interactions between the constituents.
"Finding a new composite material that achieves the same performance as the original using human experience and intuition alone takes a very long time because you have to evaluate countless materials while also taking into account the interactions between them," explains Michihiro Okuyama, assistant manager at Konica Minolta, Inc.
Machine learning offers a potential solution to this problem. Scientists have proposed several machine learning methods to conduct rapid searches among a large number of materials, based on the relationship between the materials' features and performance. However, in many cases the properties of the constituent materials are unknown, making these types of predictive searches difficult.
To overcome this limitation, the researchers developed a new type of machine learning method for finding alternative materials. A key advantage of the new method is that it can quantitatively evaluate the interactions among the component materials to reveal how much they contribute to the overall performance of the composite. The method then searches for replacement constituents with similar performance to the original material.
The researchers tested their method by searching for alternative constituent materials for a composite consisting of three materials - resin, a filler and an additive. They experimentally evaluated the performance of the substitute materials identified by machine learning and found that they were similar to the original material, proving that the model works.
"In developing alternatives, that make up composite materials, our new machine learning method removes the need to test large numbers of candidates by trial and error, saving both time and money." says Okuyama.
The method could be used to quickly and efficiently identify sustainable substitutes for composite materials, reducing plastic use and encouraging the use of biomass or renewable materials.
Further information
Michihiro Okuyama
KONICA MINOLTA, INC.
Email:
michihiro.okuyama@konicaminolta.com
About Science and Technology of Advanced Materials: Methods (STAM Methods)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr. Masanobu Naito
STAM Methods Publishing Director
Email:
NAITO.Masanobu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Chemicals, Spec.Chem, Science & Nanotech, Artificial Intel [AI]
Copyright ©2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
myBillBook Leverages CleverTap to Elevate Customer Engagement and Drive Revenue Growth
Nov 14, 2024 20:00 JST
ULVAC Launches Oil Rotary Vacuum Pump Gv135
Nov 14, 2024 10:00 JST
MHI Publishes MHI REPORT 2024
Nov 13, 2024 16:52 JST
SoftBank Corp. and Fujitsu Strengthen Partnership for Realization of AI-RAN Commercialization
Nov 13, 2024 12:38 JST
Predictive Heart Monitoring Startup, GPx, Secures New Investment From NEC X; Joins Elev X! Boost Venture Studio Program
Nov 13, 2024 12:05 JST
NEC receives order for next-generation supercomputer system from Japan's National Institutes for Quantum Science and Technology and National Institute for Fusion Science
Nov 13, 2024 11:16 JST
All-New Triton Wins Special Award at the RJC Car of the Year for 2025
Nov 12, 2024 22:09 JST
Toyota: HySE to participate in the Dakar 2025 "Mission 1000 ACT2" with the HySE-X2, to tackle further technical challenges
Nov 12, 2024 20:04 JST
NEC participates in COP29 climate change conference
Nov 12, 2024 19:25 JST
JA Mitsui Leasing and Fujitsu collaborate on simulation-driven field trials to optimize commercial EV adoption and drive decarbonization
Nov 12, 2024 13:57 JST
Macnica publishes Integrated Report on the theme of 'An Introductory Guide to Macnica's Mechanism'
Nov 12, 2024 13:00 JST
Hitachi: Established the Open Source Program Office (OSPO) to Globally Lead the Strategic Utilization of OSS
Nov 11, 2024 10:31 JST
Transgene and NEC Present New Data Confirming Clinical Proof of Principle for Neoantigen Cancer Vaccine, TG4050, in Head & Neck Cancer at SITC 2024
Nov 08, 2024 10:31 JST
Hitachi High-Tech and University of Tokyo Promote Joint Research for the Practical Application of High-resolution Laser-PEEM in the Semiconductor Field
Nov 07, 2024 18:19 JST
Mitsubishi Motors Acquires Its Own Shares from Nissan
Nov 07, 2024 17:20 JST
Honda Signs Sponsorship Agreement to Provide Electrified Vehicles at World Athletics Championships Tokyo 25
Nov 07, 2024 17:10 JST
Home of Fujitsu joint conservation project designated as first Nationally Certified Sustainably Managed Natural Site in Okinawa
Nov 07, 2024 14:51 JST
NEC and NEC Bio publish foundational work on T Cell Receptor engineering using proprietary generative AI at the Society for Immunotherapy of Cancer annual meeting
Nov 07, 2024 11:40 JST
Anime Tokyo Station 1st Anniversary Event: Celebrating one year since the opening of the new hub for sharing Japanese anime
Nov 07, 2024 11:00 JST
57% of Banking Executives Struggle with Data Silos, Blocking AI-Driven Personalization, CleverTap's New Report Highlights
Nov 06, 2024 15:30 JST
More Latest Release >>
Related Release
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
Closing the loop between artificial intelligence and robotic experiments
August 24 2023 09:00 JST
More Press release >>