ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Feb 18, 2022 20:00 JST
Source:
Science and Technology of Advanced Materials
Portable generator powers small safety devices
The compact, lightweight device generates electricity when shaken and can power 100 LEDs.
TSUKUBA, Japan, Feb 18, 2022 - (ACN Newswire) - A new stick-like, water-based device can convert energy from movement into electricity. The technology, which was reported in the journal Science and Technology of Advanced Materials, could be used to power portable devices, such as safety lights.
The portable stick generator can be used to power a safety traffic light baton with 100 LEDs.
With the growing interest in the internet of things and small electronics, there is high demand for portable energy sources. One way to produce power is to harvest energy from the environment, such as thermal, solar or mechanical energy. To capture mechanical energy - the power an object gets from its position and motion - scientists have developed triboelectric nanogenerators, which can produce electricity through friction.
"Triboelectric nanogenerators are one of the most effective tools for harvesting mechanical energy because of their high electrical output, low cost and easy accessibility," professor Sangmin Lee of Chung-ang University in the Republic of Korea.
Triboelectric generators are electrically charged when two dissimilar materials touch and then separate. For example, when a balloon is rubbed on clothing, the balloon becomes charged and can stick to things. However, friction between two materials inevitably causes damage, reducing device lifespan.
Using liquids can reduce friction, but liquid-based generators have a considerably lower electrical output than solid ones. There is also a trade-off between making the device large enough for the liquid to move and generate electricity, while also ensuring it is compact enough to be portable.
To overcome these problems, researchers at Chung-ang University, together with colleagues in South Korea and the US, developed a lightweight, compact, water-based generator that can produce electrical power when shaken.
The device has a simple stick-like design and consists of 10ml of water, a polymer cylinder and electrodes. The container's polymer material is negatively charged. The water moves up and down when the device is shaken, acquiring a positive charge that is transferred to the electrodes to generate a high electrical output.
"Because of its simple mechanism and design, this small and lightweight device could be used in everyday life. Electrical power can be produced simply by pouring water into the generator then giving it a shake," explains Lee.
The researchers tested different designs, changing the size and ratio of the electrodes, the physical space between the electrodes and the amount of water in order to determine the optimal combination. They found that the portable stick generator could generate a high electrical output reaching 710 volts when it had adequate space for water movement and a high electrode area.
The researchers showed that the generator can power 100 LED lights, meaning it could be used as a traffic safety light baton that illuminates when shaken. This study demonstrates the potential for triboelectric nanogenerators to be used for a wide range of everyday applications.
Further information
Sangmin Lee
Chung-ang University
Email:
slee98@cau.ac.kr
Research paper:
https://doi.org/10.1080/14686996.2022.2030195
About Science and Technology of Advanced Materials (STAM)
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
https://www.tandfonline.com/STAM
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Science & Nanotech, Alternative Energy, Engineering
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
MHI Delivers 60 Cars for the Nippori-Toneri Liner Model 330
Jan 15, 2025 16:38 JST
JCB and Taiwan Rakuten Card Launch New JCB Panda Card
Jan 15, 2025 15:00 JST
Fujitsu, Resona Bank and Saitama Resona Bank launch new web service to simplify home-buying process
Jan 15, 2025 13:13 JST
FDA Accepts LEQEMBI (lecanemab-irmb) Biologics License Application for Subcutaneous Maintenance Dosing for the Treatment of Early Alzheimer's Disease
Jan 15, 2025 10:03 JST
18th Asian Financial Forum wraps up successfully
Jan 14, 2025 20:56 JST
Honda Civic Hybrid Named 2025 North American Car of the Year, Making Civic the Most Honored Model in the History of the Award
Jan 13, 2025 17:07 JST
Galaxy Payroll: Driving Innovation in Human Resources Management
Jan 10, 2025 23:35 JST
Honda 2025 Motorsports Program Overview
Jan 10, 2025 20:26 JST
TOYOTA GAZOO Racing Exhibiting at Tokyo Auto Salon 2025
Jan 10, 2025 18:38 JST
Mazda Introduce the All-NEW "Mazda6" Battery EV in Europe
Jan 10, 2025 17:27 JST
JCB unveils a new e-book that empowers merchants and acquirers to harness growth drivers in the European region
Jan 10, 2025 12:00 JST
NEC and Biomy Partner to Develop and Expand AI-Based Analytical Platforms in the Digital Pathology Field
Jan 10, 2025 11:37 JST
Outlander PHEV Tops Canada's Plug-In Hybrid EV Sales in 2024
Jan 10, 2025 09:25 JST
Honda Presents World Premiere of Honda 0 Saloon and Honda 0 SUV Prototypes at CES 2025
Jan 08, 2025 17:32 JST
Honda and Renesas Sign Agreement to Develop High-Performance SoC for Software-Defined Vehicles
Jan 08, 2025 12:30 JST
Mitsubishi Motors to Display Custom Versions of the Triton at Tokyo Auto Salon 2025
Jan 07, 2025 15:41 JST
'Toyota Woven City,' a Test Course for Mobility, Completes Phase 1 Construction and Prepares for Launch
Jan 07, 2025 15:25 JST
Elucidation of part of the Mechanism by which Lecanemab Slows the Progression of Alzheimer's Disease
Jan 07, 2025 09:14 JST
Toyota to Share Progress on Woven City at CES 2025
Jan 06, 2025 15:49 JST
Mazda to build Module Pack Plant for Cylindrical Lithium-ion Batteries for Automotive Use in Iwakuni City, Yamaguchi Prefecture
Jan 06, 2025 15:36 JST
More Latest Release >>
Related Release
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
More Press release >>