ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Jan 18, 2022 23:00 JST
Source:
Science and Technology of Advanced Materials
Tiny electric generators could accelerate wound healing
Researchers are working to overcome challenges in order to bring wearable, electric, wound-healing devices to clinical practice.
TSUKUBA, Japan, Jan 18, 2022 - (ACN Newswire) - Tiny dressings that generate electricity in response to movement could accelerate wound healing and tissue regeneration. Scientists in Taiwan reviewed the latest advances and potential applications of wound healing technology in the journal Science and Technology of Advanced Materials.
"Piezoelectric and triboelectric nanogenerators are excellent candidates for self-assisted wound healing due to their light weight, flexibility, elasticity and biocompatibility," says bioengineer Zong-Hong Lin of the National Tsing Hua University in Taiwan.
The natural wound healing process involves complex interactions between ions, cells, blood vessels, genes and the immune system; with every player triggered by a sequence of molecular events. An integral part of this process involves the generation of a weak electric field by the damaged epithelium - the layer of cells covering tissue. The electric field forms as a result of an ion gradient in the wound bed, which plays an important role in directing cell migration and promoting blood vessel formation in the area.
Scientists discovered in the mid- to late-1900s that stimulating tissue with an electric field could improve wound healing. Current research in this field is now focused on developing small, wearable, and inexpensive patches that aren't encumbered by external electrical equipment.
This has led to research on piezoelectric materials, including natural materials like crystals, silk, wood, bone, hair and rubber, and synthetic materials such as quartz analogs, ceramics and polymers. These materials generate an electric current when exposed to mechanical stress. Nanogenerators developed using the synthetic materials are especially promising.
For example, some research teams are exploring the use of self-powered piezoelectric nanogenerators made with zinc oxide nanorods on a polydimethylsiloxane matrix for accelerating wound healing. Zinc oxide has the advantage of being piezoelectric and biocompatible. Other scientists are using scaffolds made from polyurethane and polyvinylidene fluoride (PVDF) due to their high piezoelectricity, chemical stability, ease of manufacturing and biocompatibility. These and other piezoelectric nanogenerators have shown promising results in laboratory and animal studies.
Another type of device, called a triboelectric nanogenerator (TENG), produces an electric current when two interfacing materials come into and out of contact with each other. Scientists have experimented with TENGs that generate electricity from breathing movements, for example, to accelerate wound healing in rats. They have also loaded TENG patches with antibiotics to facilitate wound healing by also treating localized infection.
"Piezoelectric and triboelectric nanogenerators are excellent candidates for self-assisted wound healing due to their light weight, flexibility, elasticity and biocompatibility," says bioengineer Zong-Hong Lin of the National Tsing Hua University in Taiwan. "But there are still several bottlenecks to their clinical application."
For example, they still need to be customized so they are fit-for-size, as wound dimensions vary widely. They also need to be firmly attached without being negatively affected or corroded by the fluids that naturally exude from wounds.
"Our future aim is to develop cost-effective and highly efficient wound dressing systems for practical clinical applications," says Lin.
Further information
Zong-Hong Lin
National Tsing Hua University
Email:
linzh@mx.nthu.edu.tw
Research paper:
https://www.tandfonline.com/doi/full/10.1080/14686996.2021.2015249
About Science and Technology of Advanced Materials (STAM)
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
https://www.tandfonline.com/STAM
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Science & Nanotech, BioTech
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Soligenix's Leadership Aims to Drive Growth in Rare Disease Markets in 2025 and 2026
Feb 22, 2025 04:50 JST
Honda Receives Highest Ranking of 3 Stars as Part of FIA Road Safety Index, Tool for Organizations and Companies to Measure Their Road Safety Footprint
Feb 21, 2025 19:40 JST
Honda Partners with United Nations Road Safety Fund (UNRSF) to Work Toward Reduction of Fatalities from Traffic Collisions
Feb 21, 2025 19:11 JST
Mitsubishi Logistics Corporation, Mitsubishi Corporation, and Yourstand Inc. Advancing Completely CO2-Free Electrification of Pharmaceutical Transportation
Feb 21, 2025 15:01 JST
NEC Innovation Challenge awards Canada's Prevu3D Inc. with the NEC Award and NOFF Award
Feb 21, 2025 14:39 JST
NEC Develops Near Real-time RIC for High Performance 5G vRAN
Feb 21, 2025 12:00 JST
Eisai Selected for "Human Capital Leaders 2024" and "Human Capital Management Gold Quality" for Second Consecutive Year, as a Company Committed to Excellent Management and Disclosure of Human Capital Initiatives
Feb 20, 2025 13:29 JST
NEC X & Carbide Ventures Partner To Rapidly Accelerate Early-Stage Startups
Feb 19, 2025 20:16 JST
Mitsubishi Power Advances Bahrain's Industrial Growth with Completion of Alba's Power Station 5 Block 4 Combined Cycle Power Plant Project
Feb 19, 2025 16:54 JST
Honda Reveals Specification for its Next-generation Fuel Cell Module
Feb 19, 2025 11:07 JST
NEC Orchestrating Future Fund invests in Aetion, a U.S.-based provider of healthcare analytics platforms
Feb 19, 2025 09:08 JST
Osaka Gas and MHI Launch CO2NNEX Digital Platform for Management and Transfer of Clean Gas Certificates for e-Methane, for Use during Expo 2025
Feb 18, 2025 13:18 JST
TOYOTA GAZOO Racing starts WEC season with Qatar challenge
Feb 17, 2025 18:45 JST
FLAT OUT IN TOKYO "Red Bull Showrun x Powered by Honda" April 2 (Wed)
Feb 17, 2025 16:21 JST
Thrilling TOYOTA GAZOO Racing one-two on Swedish snow
Feb 17, 2025 14:23 JST
Launch of Joint Demonstration Experiment of Remote Provision of GPU Computing Power
Feb 17, 2025 14:10 JST
Mazda to Strengthen Production and Sales Systems in Thailand
Feb 14, 2025 17:04 JST
Toyota Develops New Fuel Cell System
Feb 14, 2025 15:27 JST
Development of Prediction Model for Brain Amyloid-Beta Accumulation for Early Screening of Alzheimer's Disease
Feb 14, 2025 12:09 JST
Nissan, Honda and Mitsubishi Motors terminate MOU regarding consideration of tripartite collaboration
Feb 13, 2025 16:20 JST
More Latest Release >>
Related Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>