ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Sep 30, 2021 07:00 JST
Source:
Science and Technology of Advanced Materials
Improving machine learning for materials design
A quick, cost-effective approach improves the accuracy with which machine learning models can predict the properties of new materials.
TSUKUBA, Japan, Sep 30, 2021 - (ACN Newswire) - A new approach can train a machine learning model to predict the properties of a material using only data obtained through simple measurements, saving time and money compared with those currently used. It was designed by researchers at Japan's National Institute for Materials Science (NIMS), Asahi KASEI Corporation, Mitsubishi Chemical Corporation, Mitsui Chemicals, and Sumitomo Chemical Co and reported in the journal Science and Technology of Advanced Materials: Methods.
The new approach can predict difficult-to-measure experimental data such as tensile modulus using easy-to-measure experimental data like X-ray diffraction. It further helps design new materials or repurpose already known ones.
"Machine learning is a powerful tool for predicting the composition of elements and process needed to fabricate a material with specific properties," explains Ryo Tamura, a senior researcher at NIMS who specializes in the field of materials informatics.
A tremendous amount of data is usually needed to train machine learning models for this purpose. Two kinds of data are used. Controllable descriptors are data that can be chosen without making a material, such as the chemical elements and processes used to synthesize it. But uncontrollable descriptors, like X-ray diffraction data, can only be obtained by making the material and conducting experiments on it.
"We developed an effective experimental design method to more accurately predict material properties using descriptors that cannot be controlled," says Tamura.
The approach involves the examination of a dataset of controllable descriptors to choose the best material with the target properties to use for improving the model's accuracy. In this case, the scientists interrogated a database of 75 types of polypropylenes to select a candidate with specific mechanical properties.
They then selected the material and extracted some of its uncontrollable descriptors, for example, its X-ray diffraction data and mechanical properties.
This data was added to the present dataset to better train a machine learning model employing special algorithms to predict a material's properties using only uncontrollable descriptors.
"Our experimental design can be used to predict difficult-to-measure experimental data using easy-to-measure data, accelerating our ability to design new materials or to repurpose already known ones, while reducing the costs," says Tamura. The prediction method can also help improve understanding of how a material's structure affects specific properties.
The team is currently working on further optimizing their approach in collaboration with chemical manufacturers in Japan.
Further information
Ryo Tamura
National Institute for Materials Science (NIMS)
Email:
tamura.ryo@nims.go.jp
About Science and Technology of Advanced Materials: Methods (STAM Methods)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr. Yoshikazu Shinohara
STAM Methods Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Soligenix's Leadership Aims to Drive Growth in Rare Disease Markets in 2025 and 2026
Feb 22, 2025 04:50 JST
Honda Receives Highest Ranking of 3 Stars as Part of FIA Road Safety Index, Tool for Organizations and Companies to Measure Their Road Safety Footprint
Feb 21, 2025 19:40 JST
Honda Partners with United Nations Road Safety Fund (UNRSF) to Work Toward Reduction of Fatalities from Traffic Collisions
Feb 21, 2025 19:11 JST
Mitsubishi Logistics Corporation, Mitsubishi Corporation, and Yourstand Inc. Advancing Completely CO2-Free Electrification of Pharmaceutical Transportation
Feb 21, 2025 15:01 JST
NEC Innovation Challenge awards Canada's Prevu3D Inc. with the NEC Award and NOFF Award
Feb 21, 2025 14:39 JST
NEC Develops Near Real-time RIC for High Performance 5G vRAN
Feb 21, 2025 12:00 JST
Eisai Selected for "Human Capital Leaders 2024" and "Human Capital Management Gold Quality" for Second Consecutive Year, as a Company Committed to Excellent Management and Disclosure of Human Capital Initiatives
Feb 20, 2025 13:29 JST
NEC X & Carbide Ventures Partner To Rapidly Accelerate Early-Stage Startups
Feb 19, 2025 20:16 JST
Mitsubishi Power Advances Bahrain's Industrial Growth with Completion of Alba's Power Station 5 Block 4 Combined Cycle Power Plant Project
Feb 19, 2025 16:54 JST
Honda Reveals Specification for its Next-generation Fuel Cell Module
Feb 19, 2025 11:07 JST
NEC Orchestrating Future Fund invests in Aetion, a U.S.-based provider of healthcare analytics platforms
Feb 19, 2025 09:08 JST
Osaka Gas and MHI Launch CO2NNEX Digital Platform for Management and Transfer of Clean Gas Certificates for e-Methane, for Use during Expo 2025
Feb 18, 2025 13:18 JST
TOYOTA GAZOO Racing starts WEC season with Qatar challenge
Feb 17, 2025 18:45 JST
FLAT OUT IN TOKYO "Red Bull Showrun x Powered by Honda" April 2 (Wed)
Feb 17, 2025 16:21 JST
Thrilling TOYOTA GAZOO Racing one-two on Swedish snow
Feb 17, 2025 14:23 JST
Launch of Joint Demonstration Experiment of Remote Provision of GPU Computing Power
Feb 17, 2025 14:10 JST
Mazda to Strengthen Production and Sales Systems in Thailand
Feb 14, 2025 17:04 JST
Toyota Develops New Fuel Cell System
Feb 14, 2025 15:27 JST
Development of Prediction Model for Brain Amyloid-Beta Accumulation for Early Screening of Alzheimer's Disease
Feb 14, 2025 12:09 JST
Nissan, Honda and Mitsubishi Motors terminate MOU regarding consideration of tripartite collaboration
Feb 13, 2025 16:20 JST
More Latest Release >>
Related Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>