ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Sep 30, 2021 07:00 JST
Source:
Science and Technology of Advanced Materials
Improving machine learning for materials design
A quick, cost-effective approach improves the accuracy with which machine learning models can predict the properties of new materials.
TSUKUBA, Japan, Sep 30, 2021 - (ACN Newswire) - A new approach can train a machine learning model to predict the properties of a material using only data obtained through simple measurements, saving time and money compared with those currently used. It was designed by researchers at Japan's National Institute for Materials Science (NIMS), Asahi KASEI Corporation, Mitsubishi Chemical Corporation, Mitsui Chemicals, and Sumitomo Chemical Co and reported in the journal Science and Technology of Advanced Materials: Methods.
The new approach can predict difficult-to-measure experimental data such as tensile modulus using easy-to-measure experimental data like X-ray diffraction. It further helps design new materials or repurpose already known ones.
"Machine learning is a powerful tool for predicting the composition of elements and process needed to fabricate a material with specific properties," explains Ryo Tamura, a senior researcher at NIMS who specializes in the field of materials informatics.
A tremendous amount of data is usually needed to train machine learning models for this purpose. Two kinds of data are used. Controllable descriptors are data that can be chosen without making a material, such as the chemical elements and processes used to synthesize it. But uncontrollable descriptors, like X-ray diffraction data, can only be obtained by making the material and conducting experiments on it.
"We developed an effective experimental design method to more accurately predict material properties using descriptors that cannot be controlled," says Tamura.
The approach involves the examination of a dataset of controllable descriptors to choose the best material with the target properties to use for improving the model's accuracy. In this case, the scientists interrogated a database of 75 types of polypropylenes to select a candidate with specific mechanical properties.
They then selected the material and extracted some of its uncontrollable descriptors, for example, its X-ray diffraction data and mechanical properties.
This data was added to the present dataset to better train a machine learning model employing special algorithms to predict a material's properties using only uncontrollable descriptors.
"Our experimental design can be used to predict difficult-to-measure experimental data using easy-to-measure data, accelerating our ability to design new materials or to repurpose already known ones, while reducing the costs," says Tamura. The prediction method can also help improve understanding of how a material's structure affects specific properties.
The team is currently working on further optimizing their approach in collaboration with chemical manufacturers in Japan.
Further information
Ryo Tamura
National Institute for Materials Science (NIMS)
Email:
tamura.ryo@nims.go.jp
About Science and Technology of Advanced Materials: Methods (STAM Methods)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr. Yoshikazu Shinohara
STAM Methods Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech
Copyright ©2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Honda Introduces AI-powered Social Robot, Haru, to University Hospital in Spain
Dec 02, 2024 23:08 JST
DENSO to Exhibit at "Automechanika Dubai 2024"
Dec 02, 2024 22:38 JST
Fujitsu expands global strategic collaboration agreement with AWS to promote customer digital transformation across industries
Dec 02, 2024 22:07 JST
MHI Receives Order to Supply 24 MOX Fuel Assemblies for Unit 3 of Ikata Nuclear Power Station, Shikoku Electric Power Co. Inc.
Dec 02, 2024 12:55 JST
MHI Receives Order from Taiwan High Speed Rail Corporation for Trackwork and Core System for New Rolling Stock Inspection Shop in Zuoying Depot
Dec 02, 2024 12:21 JST
ULVAC Launches New Deposition System for Semiconductor Applications: Model "ENTRON-EXX"
Dec 02, 2024 09:10 JST
Launch of Demonstration Test for CO2 Capture from Chemical Recovery Boilers at Paper Mills in Japan
Nov 29, 2024 19:11 JST
Mitsubishi Electric's Swedish Subsidiary Signs a Share Transfer Agreement to Wholly Acquire Norwegian Elevator Company ALT Heis
Nov 29, 2024 15:30 JST
JAL and NEC Test AI-Powered Carry-On Baggage Analysis Solution
Nov 29, 2024 15:27 JST
Hitachi Energy to integrate ScottishPower wind farm to power almost one million homes in the United Kingdom
Nov 29, 2024 12:54 JST
TGR Announces Partially Upgraded Supra (3.0-liter) and Special-edition Supra "A90 Final Edition"
Nov 29, 2024 11:22 JST
Hitachi Receives an Order for All 147 Elevators and Escalators for the Second Phase of the Taipei MRT Wanda-Zhonghe-Shulin Line
Nov 28, 2024 22:20 JST
MHI Successfully Achieves 1,200 Hour Long-Term Durability Test Milestone on 90 MPa-Class Ultra-High-Pressure Liquid Hydrogen Booster Pump
Nov 28, 2024 20:58 JST
"LEQEMBI" (Lecanemab) for the Treatment of Alzheimer's Disease Launched in South Korea
Nov 28, 2024 16:26 JST
Hitachi High-Tech Launches DCR Etch System 9060 Series, Supporting Isotropic Etching of Advanced 3D Devices at the Atomic Level
Nov 28, 2024 11:31 JST
MHI Delivers Final Trainset of Automated Guideway Transit System "2020 Series" to Saitama New Urban Transit
Nov 28, 2024 10:08 JST
TOPVISION Launches Prospectus for Listing Transfer from LEAP to the ACE Market
Nov 27, 2024 05:53 JST
TOYOTA GAZOO Racing FULLY PREPARED FOR DAKAR 2025
Nov 26, 2024 17:55 JST
Eisai Signs Research Collaboration Agreement with The National Center of Neurology and Psychiatry to Initiate Apolipoprotein E Genetic Testing in the "AD-DMT Registry" in Japan
Nov 26, 2024 15:50 JST
Fujitsu develops Policy Twin, a new digital twin technology to maximize effectiveness of local government policies for solving societal issues
Nov 26, 2024 10:51 JST
More Latest Release >>
Related Release
Machine learning used to optimise polymer production
December 02 2024 17:00 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
More Press release >>