ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Aug 18, 2021 15:30 JST
Source:
Science and Technology of Advanced Materials
Submerged sensors to control wearable electronics
Scientists in Korea make hand-drawn and flexible pressure sensors that can control a phone from underwater
TSUKUBA, Japan, Aug 18, 2021 - (ACN Newswire) - Flexible and waterproof sensors that could unlock new applications for wearable electronics have been developed by scientists in Korea. Published in the journal Science and Technology of Advanced Materials, the study shows how the pressure sensor can control a phone, to take photos and play music, even when the sensor is fully immersed in water.
Scientists in Korea have developed a pressure sensor that can control a cell phone from underwater
The technology could transform the use of wearable electronics in healthcare, smart textiles and for specific applications including scuba diving equipment, say the study researchers, who are based at Soongsil University in Seoul.
"Flexible electronics will usher in a whole new world of wearable technologies to monitor our health and lifestyles," says Jooyong Kim, a materials scientist who led the research. "But until now, many of these applications have been held back because the pressure sensors they rely on could not handle being exposed to water. We have changed that."
To demonstrate the power of the new technology, the researchers incorporated one of the sensors into a flexible face mask. Sensitive enough to detect the movement of air inside the mask, the sensor could track and report the rate of breathing of a wearer in real-time.
The sensor converts tiny movements caused by change in pressure and electrical resistance into electronic signals. Like many similar flexible electronic devices, the design of the circuit was hand-drawn onto a conducting material with a marker-pen, which acts to shield the circuitry when the rest of the material was etched away. This is cheaper than traditional methods.
The researchers then mounted the finger-print sized circuit onto a blend of wet tissue paper and carbon nanotubes, which works to detect changes in pressure. They then covered the layered sensor device with a strip of tape, to make it waterproof.
The device can track both the magnitude and location of pressure applied to it. Using machine learning technology to process the signals, the researchers found the sensors could feel and report applied pressures in the lab with up to 94% accuracy. And by connecting the sensor to a wi-fi network, the researchers could press it underwater to control phone functions, including double touch, triple touch, short touch, and long touch patterns.
"We expect the readily-available materials, easy fabrication techniques, and machine learning algorithms we have demonstrated in this journal article will bring significant contributions to the development of hand-drawn sensors in the future," says Kim.
Further information
Jooyong Kim
Soongsil University
Email:
jykim@ssu.ac.kr
Paper:
https://www.tandfonline.com/doi/full/10.1080/14686996.2021.1961100
About Science and Technology of Advanced Materials (STAM)
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
https://www.tandfonline.com/STAM
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Science & Nanotech, Science & Research
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Soligenix's Leadership Aims to Drive Growth in Rare Disease Markets in 2025 and 2026
Feb 22, 2025 04:50 JST
Honda Receives Highest Ranking of 3 Stars as Part of FIA Road Safety Index, Tool for Organizations and Companies to Measure Their Road Safety Footprint
Feb 21, 2025 19:40 JST
Honda Partners with United Nations Road Safety Fund (UNRSF) to Work Toward Reduction of Fatalities from Traffic Collisions
Feb 21, 2025 19:11 JST
Mitsubishi Logistics Corporation, Mitsubishi Corporation, and Yourstand Inc. Advancing Completely CO2-Free Electrification of Pharmaceutical Transportation
Feb 21, 2025 15:01 JST
NEC Innovation Challenge awards Canada's Prevu3D Inc. with the NEC Award and NOFF Award
Feb 21, 2025 14:39 JST
NEC Develops Near Real-time RIC for High Performance 5G vRAN
Feb 21, 2025 12:00 JST
Eisai Selected for "Human Capital Leaders 2024" and "Human Capital Management Gold Quality" for Second Consecutive Year, as a Company Committed to Excellent Management and Disclosure of Human Capital Initiatives
Feb 20, 2025 13:29 JST
NEC X & Carbide Ventures Partner To Rapidly Accelerate Early-Stage Startups
Feb 19, 2025 20:16 JST
Mitsubishi Power Advances Bahrain's Industrial Growth with Completion of Alba's Power Station 5 Block 4 Combined Cycle Power Plant Project
Feb 19, 2025 16:54 JST
Honda Reveals Specification for its Next-generation Fuel Cell Module
Feb 19, 2025 11:07 JST
NEC Orchestrating Future Fund invests in Aetion, a U.S.-based provider of healthcare analytics platforms
Feb 19, 2025 09:08 JST
Osaka Gas and MHI Launch CO2NNEX Digital Platform for Management and Transfer of Clean Gas Certificates for e-Methane, for Use during Expo 2025
Feb 18, 2025 13:18 JST
TOYOTA GAZOO Racing starts WEC season with Qatar challenge
Feb 17, 2025 18:45 JST
FLAT OUT IN TOKYO "Red Bull Showrun x Powered by Honda" April 2 (Wed)
Feb 17, 2025 16:21 JST
Thrilling TOYOTA GAZOO Racing one-two on Swedish snow
Feb 17, 2025 14:23 JST
Launch of Joint Demonstration Experiment of Remote Provision of GPU Computing Power
Feb 17, 2025 14:10 JST
Mazda to Strengthen Production and Sales Systems in Thailand
Feb 14, 2025 17:04 JST
Toyota Develops New Fuel Cell System
Feb 14, 2025 15:27 JST
Development of Prediction Model for Brain Amyloid-Beta Accumulation for Early Screening of Alzheimer's Disease
Feb 14, 2025 12:09 JST
Nissan, Honda and Mitsubishi Motors terminate MOU regarding consideration of tripartite collaboration
Feb 13, 2025 16:20 JST
More Latest Release >>
Related Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>