ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
May 15, 2021 08:00 JST
Source:
Science and Technology of Advanced Materials
Better memristors for brain-like computing
Neurone-like junctions made of mixed oxide-based materials could reduce the massive energy consumption of artificial intelligence operations.
TSUKUBA, Japan, May 15, 2021 - (ACN Newswire) - Scientists are getting better at making neurone-like junctions for computers that mimic the human brain's random information processing, storage and recall. Fei Zhuge of the Chinese Academy of Sciences and colleagues reviewed the latest developments in the design of these 'memristors' for the journal Science and Technology of Advanced Materials.
Researchers are developing computer hardware for artificial intelligence that allows for more random and simultaneous information transfer and storage, much like the human brain.
Computers apply artificial intelligence programs to recall previously learned information and make predictions. These programs are extremely energy- and time-intensive: typically, vast volumes of data must be transferred between separate memory and processing units. To solve this issue, researchers have been developing computer hardware that allows for more random and simultaneous information transfer and storage, much like the human brain.
Electronic circuits in these 'neuromorphic' computers include memristors that resemble the junctions between neurones called synapses. Energy flows through a material from one electrode to another, much like a neurone firing a signal across the synapse to the next neurone. Scientists are now finding ways to better tune this intermediate material so the information flow is more stable and reliable.
"Oxides are the most widely used materials in memristors," says Zhuge. "But oxide memristors have unsatisfactory stability and reliability. Oxide-based hybrid structures can effectively improve this."
Memristors are usually made of an oxide-based material sandwiched between two electrodes. Researchers are getting better results when they combine two or more layers of different oxide-based materials between the electrodes. When an electrical current flows through the network, it induces ions to drift within the layers. The ions' movements ultimately change the memristor's resistance, which is necessary to send or stop a signal through the junction.
Memristors can be tuned further by changing the compounds used for electrodes or by adjusting the intermediate oxide-based materials. Zhuge and his team are currently developing optoelectronic neuromorphic computers based on optically-controlled oxide memristors. Compared to electronic memristors, photonic ones are expected to have higher operation speeds and lower energy consumption. They could be used to construct next generation artificial visual systems with high computing efficiency.
Further information
Fei Zhuge
Chinese Academy of Sciences
Email:
zhugefei@nimte.ac.cn
About Science and Technology of Advanced Materials Journal (STAM)
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Prideone Entertainment Announces New Post-War Film to Commemorate the 80th Anniversary of World War II's End
Apr 03, 2025 07:00 JST
"GTF Advantage" Engine Achieved FAA Type Certification
Apr 02, 2025 17:41 JST
Hitachi's New Corporate Vision: Changing the World and Future with the Power of Knowledge
Apr 01, 2025 18:46 JST
Hitachi: Strengthening Our Analytical Business to Solve Social Issues with Our Core Technologies
Apr 01, 2025 18:38 JST
Hitachi: Completion of New Production Facility for Semiconductor Manufacturing Equipment in Kasado Area
Apr 01, 2025 17:52 JST
NEC has developed technologies that enable a secure workflow for personalized cancer vaccines and has proven their capabilities
Apr 01, 2025 16:15 JST
Mitsubishi Motors Launches Miland Virtual Car Lifestyle App Service
Apr 01, 2025 14:59 JST
Mitsubishi Corporation: Development of R&D Hub "iPark Kobe" in Kobe Medical Industry City
Apr 01, 2025 14:16 JST
Eisai to Divest Rights for Pariet in China to Peak Pharma
Apr 01, 2025 13:15 JST
Everbright Grand China Assets Recorded Revenue of RMB 45.9 Million in 2024
Apr 01, 2025 12:25 JST
MHIEC Receives Order for Full Refurbishment of Waste Incineration Plant in Itoman City, Okinawa Prefecture
Apr 01, 2025 11:45 JST
MHI Concludes "Mizuho Eco Finance" Commitment Line Agreement
Apr 01, 2025 10:51 JST
MHI Concludes Nissay Positive Impact Finance Agreement
Apr 01, 2025 09:54 JST
Gome Retail Continues to Focus on Its Main Business and Actively Resolve Debt
Apr 01, 2025 02:36 JST
Cryofocus Medtech: Steady Increase in Revenue and Gross Profit with Solid R&D Expenditures in 2024
Apr 01, 2025 01:42 JST
Five NTT Group Companies and Biome Inc. Start Joint Development of Large-scale Estimation Technology for Vegetation and Organisms using Satellite Image Data
Mar 31, 2025 15:43 JST
TANAKA Memorial Foundation Announces Recipients of Precious Metals Research Grants
Mar 31, 2025 11:00 JST
Fujitsu and Macquarie University partner to help address critical shortage of machine learning engineers
Mar 31, 2025 09:28 JST
ForexIGO by Avenix Fzco Enhances Automated Trading with Dual-Asset Precision
Mar 29, 2025 22:30 JST
Hua Medicine Announces 2024 Annual Results
Mar 28, 2025 22:51 JST
More Latest Release >>
Related Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>