ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
May 15, 2021 08:00 JST
Source:
Science and Technology of Advanced Materials
Better memristors for brain-like computing
Neurone-like junctions made of mixed oxide-based materials could reduce the massive energy consumption of artificial intelligence operations.
TSUKUBA, Japan, May 15, 2021 - (ACN Newswire) - Scientists are getting better at making neurone-like junctions for computers that mimic the human brain's random information processing, storage and recall. Fei Zhuge of the Chinese Academy of Sciences and colleagues reviewed the latest developments in the design of these 'memristors' for the journal Science and Technology of Advanced Materials.
Researchers are developing computer hardware for artificial intelligence that allows for more random and simultaneous information transfer and storage, much like the human brain.
Computers apply artificial intelligence programs to recall previously learned information and make predictions. These programs are extremely energy- and time-intensive: typically, vast volumes of data must be transferred between separate memory and processing units. To solve this issue, researchers have been developing computer hardware that allows for more random and simultaneous information transfer and storage, much like the human brain.
Electronic circuits in these 'neuromorphic' computers include memristors that resemble the junctions between neurones called synapses. Energy flows through a material from one electrode to another, much like a neurone firing a signal across the synapse to the next neurone. Scientists are now finding ways to better tune this intermediate material so the information flow is more stable and reliable.
"Oxides are the most widely used materials in memristors," says Zhuge. "But oxide memristors have unsatisfactory stability and reliability. Oxide-based hybrid structures can effectively improve this."
Memristors are usually made of an oxide-based material sandwiched between two electrodes. Researchers are getting better results when they combine two or more layers of different oxide-based materials between the electrodes. When an electrical current flows through the network, it induces ions to drift within the layers. The ions' movements ultimately change the memristor's resistance, which is necessary to send or stop a signal through the junction.
Memristors can be tuned further by changing the compounds used for electrodes or by adjusting the intermediate oxide-based materials. Zhuge and his team are currently developing optoelectronic neuromorphic computers based on optically-controlled oxide memristors. Compared to electronic memristors, photonic ones are expected to have higher operation speeds and lower energy consumption. They could be used to construct next generation artificial visual systems with high computing efficiency.
Further information
Fei Zhuge
Chinese Academy of Sciences
Email:
zhugefei@nimte.ac.cn
About Science and Technology of Advanced Materials Journal (STAM)
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech
Copyright ©2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Honda Introduces AI-powered Social Robot, Haru, to University Hospital in Spain
Dec 02, 2024 23:08 JST
DENSO to Exhibit at "Automechanika Dubai 2024"
Dec 02, 2024 22:38 JST
Fujitsu expands global strategic collaboration agreement with AWS to promote customer digital transformation across industries
Dec 02, 2024 22:07 JST
MHI Receives Order to Supply 24 MOX Fuel Assemblies for Unit 3 of Ikata Nuclear Power Station, Shikoku Electric Power Co. Inc.
Dec 02, 2024 12:55 JST
MHI Receives Order from Taiwan High Speed Rail Corporation for Trackwork and Core System for New Rolling Stock Inspection Shop in Zuoying Depot
Dec 02, 2024 12:21 JST
ULVAC Launches New Deposition System for Semiconductor Applications: Model "ENTRON-EXX"
Dec 02, 2024 09:10 JST
Launch of Demonstration Test for CO2 Capture from Chemical Recovery Boilers at Paper Mills in Japan
Nov 29, 2024 19:11 JST
Mitsubishi Electric's Swedish Subsidiary Signs a Share Transfer Agreement to Wholly Acquire Norwegian Elevator Company ALT Heis
Nov 29, 2024 15:30 JST
JAL and NEC Test AI-Powered Carry-On Baggage Analysis Solution
Nov 29, 2024 15:27 JST
Hitachi Energy to integrate ScottishPower wind farm to power almost one million homes in the United Kingdom
Nov 29, 2024 12:54 JST
TGR Announces Partially Upgraded Supra (3.0-liter) and Special-edition Supra "A90 Final Edition"
Nov 29, 2024 11:22 JST
Hitachi Receives an Order for All 147 Elevators and Escalators for the Second Phase of the Taipei MRT Wanda-Zhonghe-Shulin Line
Nov 28, 2024 22:20 JST
MHI Successfully Achieves 1,200 Hour Long-Term Durability Test Milestone on 90 MPa-Class Ultra-High-Pressure Liquid Hydrogen Booster Pump
Nov 28, 2024 20:58 JST
"LEQEMBI" (Lecanemab) for the Treatment of Alzheimer's Disease Launched in South Korea
Nov 28, 2024 16:26 JST
Hitachi High-Tech Launches DCR Etch System 9060 Series, Supporting Isotropic Etching of Advanced 3D Devices at the Atomic Level
Nov 28, 2024 11:31 JST
MHI Delivers Final Trainset of Automated Guideway Transit System "2020 Series" to Saitama New Urban Transit
Nov 28, 2024 10:08 JST
TOPVISION Launches Prospectus for Listing Transfer from LEAP to the ACE Market
Nov 27, 2024 05:53 JST
TOYOTA GAZOO Racing FULLY PREPARED FOR DAKAR 2025
Nov 26, 2024 17:55 JST
Eisai Signs Research Collaboration Agreement with The National Center of Neurology and Psychiatry to Initiate Apolipoprotein E Genetic Testing in the "AD-DMT Registry" in Japan
Nov 26, 2024 15:50 JST
Fujitsu develops Policy Twin, a new digital twin technology to maximize effectiveness of local government policies for solving societal issues
Nov 26, 2024 10:51 JST
More Latest Release >>
Related Release
Machine learning used to optimise polymer production
December 02 2024 17:00 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
More Press release >>