ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
Apr 16, 2021 20:00 JST
Source:
Science and Technology of Advanced Materials
Dye-based device sees the invisible
Devices that can see shortwave infrared light, which is invisible to the naked eye, could soon become cheaper and more accessible to a broader consumer base.
TSUKUBA, Japan, Apr 16, 2021 - (ACN Newswire) - Scientists in Europe have designed an organic dye-based device that can see light waves in the shortwave infrared (SWIR) range. The device is easy to make using cheap materials, and is stable at high temperatures. The findings, published in the journal Science and Technology of Advanced Materials, could lead to more widespread use of inexpensive consumer SWIR imaging and sensing devices.
In the upconversion device, shortwave infrared (SWIR) light with wavelengths beyond 1,000 nm is absorbed by the squaraine dye in the photodetector (PD), producing electrical charges. Charges flow into the organic light-emitting diode (OLED), where they recombine under the emission of visible light. This way, SWIR light, which cannot be detected by the human eye, is converted into visible light.
The human eye can only detect a very narrow segment of the electromagnetic spectrum, from around 400 to 700 nanometers. The SWIR region, on the other hand, extends from 1,000 to 2,500 nanometers. Specially designed cameras can take images of objects that reflect waves in the SWIR region. They are used for improving night vision, in airborne remote sensing, and deep tissue imaging. The cameras also help assess the composition and quality of silicon wafers, building structures and even food produce.
"These cameras are typically difficult to manufacture and are quite expensive, as they are made of inorganic semiconductor photodiode arrays interconnected with read-out integrated circuitry," says Roland Hany of the Swiss Federal Laboratories for Materials Science and Technology.
Hany worked with colleagues in Switzerland and Italy to design an organic dye-based 'SWIR upconversion device' that efficiently converts shortwave infrared light to visible light.
The device uses organic (materials made with carbon) components: a squaraine dye-coated flexible substrate combined with a fluorescent organic light-emitting diode (OLED). When the dye absorbs SWIR waves, an electric current is generated and directly converted into a visible image by the OLED.
The team had to play with the molecular composition of several squaraine dyes to get them to absorb specific wavelengths. Ultimately, they synthesized squaraine dyes that absorb SWIR light beyond 1,200 nanometers and remained stable up to 200 degrees Celsius. The finished dye-based device performed stably for several weeks under normal laboratory conditions.
"All-organic upconverters could lead to applications that can't be realized with current technology. For example, invisible night vision devices can be directly integrated into car windscreens without affecting the visual field," explains Hany.
The team is now working on shifting the dye's absorption further into the SWIR range. They are also using machine learning techniques to find new dye molecules capable of sensing SWIR waves. Finally, the team aims to improve device stability and sensitivity.
Further information
Roland Hany
Empa, Swiss Federal Laboratories for Materials Science and Technology
Email:
roland.hany@empa.ch
About Science and Technology of Advanced Materials Journal
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Science & Nanotech
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Kirin and Hitachi begin joint research on the creation of forest-based carbon credits
Apr 04, 2025 15:56 JST
Mitsubishi Corporation Announces Corporate Strategy 2027
Apr 04, 2025 09:04 JST
SMBC and Fujitsu partner towards creation of AI-powered data analytics business
Apr 03, 2025 22:10 JST
Prideone Entertainment Announces New Post-War Film to Commemorate the 80th Anniversary of World War II's End
Apr 03, 2025 07:00 JST
"GTF Advantage" Engine Achieved FAA Type Certification
Apr 02, 2025 17:41 JST
Hitachi's New Corporate Vision: Changing the World and Future with the Power of Knowledge
Apr 01, 2025 18:46 JST
Hitachi: Strengthening Our Analytical Business to Solve Social Issues with Our Core Technologies
Apr 01, 2025 18:38 JST
Hitachi: Completion of New Production Facility for Semiconductor Manufacturing Equipment in Kasado Area
Apr 01, 2025 17:52 JST
NEC has developed technologies that enable a secure workflow for personalized cancer vaccines and has proven their capabilities
Apr 01, 2025 16:15 JST
Mitsubishi Motors Launches Miland Virtual Car Lifestyle App Service
Apr 01, 2025 14:59 JST
Mitsubishi Corporation: Development of R&D Hub "iPark Kobe" in Kobe Medical Industry City
Apr 01, 2025 14:16 JST
Eisai to Divest Rights for Pariet in China to Peak Pharma
Apr 01, 2025 13:15 JST
MHIEC Receives Order for Full Refurbishment of Waste Incineration Plant in Itoman City, Okinawa Prefecture
Apr 01, 2025 11:45 JST
MHI Concludes "Mizuho Eco Finance" Commitment Line Agreement
Apr 01, 2025 10:51 JST
MHI Concludes Nissay Positive Impact Finance Agreement
Apr 01, 2025 09:54 JST
Gome Retail Continues to Focus on Its Main Business and Actively Resolve Debt
Apr 01, 2025 02:36 JST
Cryofocus Medtech: Steady Increase in Revenue and Gross Profit with Solid R&D Expenditures in 2024
Apr 01, 2025 01:42 JST
Five NTT Group Companies and Biome Inc. Start Joint Development of Large-scale Estimation Technology for Vegetation and Organisms using Satellite Image Data
Mar 31, 2025 15:43 JST
TANAKA Memorial Foundation Announces Recipients of Precious Metals Research Grants
Mar 31, 2025 11:00 JST
Fujitsu and Macquarie University partner to help address critical shortage of machine learning engineers
Mar 31, 2025 09:28 JST
More Latest Release >>
Related Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>