Jun 03, 2024 18:58 JST

Source: NEC Corporation

Successful demonstration of a superconducting circuit for qubit control within large-scale quantum computer systems
- Density of qubit-controlling-signals per cable may increase by approximately 1,000 times -

- The size of conventional transmission paths for qubit-controlling-signals limits the number of controllable qubits
- A superconducting circuit that can control multiple qubits via a single cable has been proposed and demonstrated, whereas conventional technology requires each qubit to be controlled via a separate cable
- Development of large-scale quantum computers to be accelerated by the proposed circuit

TOKYO, June 3, 2024 - (JCN Newswire) - In support of the development of large-scale superconducting quantum computers, researchers with the National Institute of Advanced Industrial Science and Technology (AIST), one of the largest public research organizations in Japan, in collaboration with Yokohama National University, Tohoku University, and NEC Corporation, proposed and successfully demonstrated a superconducting circuit that can control many qubits at low temperature.



To realize a practical quantum computer, it is necessary to control the state of a huge number of qubits (as many as one million) operating at low temperature. In conventional quantum computers, microwave signals for controlling qubits are generated at room temperature and are individually transmitted to qubits at low temperature via different cables. This results in numerous cables between room and low temperature and limits the number of controllable qubits to approximately 1,000.In this study, a superconducting circuit that can control multiple qubits via a single cable using microwave multiplexing was successfully demonstrated in proof-of-concept experiments at 4.2 K in liquid helium. This circuit has the potential of increasing the density of microwave signals per cable by approximately 1,000 times, thereby increasing the number of controllable qubits significantly and contributing to the development of large-scale quantum computers.The above results will be published in "npj Quantum Information" on June 3 at 10 a.m. London time.

Article Information
Journal: npj Quantum Information
Title: Microwave-multiplexed qubit controller using adiabatic superconductor logic
Authors: Naoki Takeuchi, Taiki Yamae, Taro Yamashita, Tsuyoshi Yamamoto, and Nobuyuki Yoshikawa
DOI: 10.1038/s41534-024-00849-2

About NEC Corporation

NEC Corporation has established itself as a leader in the integration of IT and network technologies while promoting the brand statement of “Orchestrating a brighter world.” NEC enables businesses and communities to adapt to rapid changes taking place in both society and the market as it provides for the social values of safety, security, fairness and efficiency to promote a more sustainable world where everyone has the chance to reach their full potential. For more information, visit NEC at https://www.nec.com.

Source: NEC Corporation
Sectors: Electronics

Copyright ©2024 JCN Newswire. All rights reserved. A division of Japan Corporate News Network.

Related Press Release


NEC Completes new Asia Pacific submarine cable
December 19 2024 11:02 JST
 
NEC Receives Telecom Review's Global Excellence Award for Innovative Telecom B2B/ Enterprise Network Solutions
December 18 2024 16:12 JST
 
NEC Announces Interim Results from Phase 1 Clinical Trial of NECVAX-NEO1, an AI-Driven Personalized Oral Cancer Vaccine, at ESMO Immuno-Oncology Congress 2024
December 12 2024 15:27 JST
 
NEC begins sale of 100G QSFP28 ZR4 single-fiber bi-directional optical transceiver
December 09 2024 13:06 JST
 
JAL and NEC Test AI-Powered Carry-On Baggage Analysis Solution
November 29 2024 14:27 JST
 
Start of Demonstration Test of Two-Phase Direct-to-Chip Cooling in the Air-Cooled Data Center
November 20 2024 14:30 JST
 
World's First Successful Trial of Quantum Tokens Created Using Quantum Technology
November 18 2024 16:29 JST
 
Predictive Heart Monitoring Startup, GPx, Secures New Investment From NEC X; Joins Elev X! Boost Venture Studio Program
November 13 2024 11:05 JST
 
NEC receives order for next-generation supercomputer system from Japan's National Institutes for Quantum Science and Technology and National Institute for Fusion Science
November 13 2024 10:16 JST
 
NEC participates in COP29 climate change conference
November 12 2024 18:25 JST
 
More Press release >>

Latest Press Release


More Latest Release >>