TOP PAGE
ENGLISH
JAPANESE
|
CONNECT WITH US:
Home
About
Services
Contact
Log in
*
Home
Press release
May 24, 2023 10:00 JST
Source:
Science and Technology of Advanced Materials
Machine intelligence for designing molecules and reaction pathways
Two key challenges in chemistry innovation are solved simultaneously by exploring chemical opportunities with artificial intelligence.
TSUKUBA, Japan, May 24, 2023 - (ACN Newswire) - Researchers in Japan have developed a machine learning process that simultaneously designs new molecules and suggests the chemical reactions to make them. The team, at the Institute of Statistical Mathematics (ISM) in Tokyo, published their results in the journal Science and Technology of Advanced Materials: Methods.
Designing the network of bonds linking atoms into molecules and suggesting chemical routes
to make the molecules can now be done simultaneously.
Many research groups are making significant progress in using artificial intelligence (AI) and machine learning methods to design feasible molecular structures with desired properties, but progress in putting the design concepts into practice has been slow. The greatest impediment has been the technical difficulties in finding chemical reactions that can make the designed molecules with efficiencies and costs that could be practicable for real-world uses.
"Our novel machine learning algorithm and associated software system can design molecules with any desired properties and suggest synthetic routes for making them from an extensive list of commercially available compounds," says statistical mathematician Ryo Yoshida, leader of the research group.
The process uses a statistical approach called Bayesian inference which works with a vast set of data about different options for starting materials and reaction pathways. The possible starting materials are all combinations of the millions of compounds that can be readily purchased. The computer algorithm assesses the huge range of feasible reactions and reaction networks to discover a synthetic route towards a compound with the properties it has been instructed to aim for. Expert chemists can then review the results to test and refine what the AI proposes. AI makes the suggestions while humans decide which is best.
"In a case study for designing drug-like molecules, the method showed overwhelming performance," says Yoshida. It also designed routes towards industrially useful lubricant molecules.
"We hope that our work will accelerate the process of data-driven discovery of a wide range of new materials," Yoshida concludes. In support of this aim, the ISM team has made the software implementing their machine learning system available to all researchers on the GitHub website.
The current success focused only on the design of small molecules. The team now plan to investigate adapting the procedure to design polymers. Many of the most important industrial and biological compounds are polymers, but it has proved difficult to make new versions proposed by machine learning due to challenges in finding reactions to build the designs. The simultaneous design and reaction discovery options offered by this new technology might break through that barrier.
Further information
Ryo Yoshida
The Institute of Statistical Mathematics
Email:
yoshidar@ism.ac.jp
Paper:
https://doi.org/10.1080/27660400.2023.2204994
About Science and Technology of Advanced Materials: Methods (STAM-M)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr Yasufumi Nakamichi
STAM Publishing Director
Email:
NAKAMICHI.Yasufumi@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Related Press Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>
Latest Press Release
NEC DGDF Headquarters relocates to Zurich to accelerate growth and enhance management globally
Apr 28, 2025 16:03 JST
NEC achieves Japan's longest terrestrial wireless optical communication over 10 km
Apr 25, 2025 17:50 JST
Olympus Appoints New CEO
Apr 25, 2025 15:30 JST
DENSO Announces Year-End Financial Results
Apr 25, 2025 12:17 JST
DENSO and DELPHY Sign Memorandum of Understanding to Develop Data-Driven Smart Horticulture
Apr 24, 2025 18:43 JST
MyJCB App Wins "iF DESIGN AWARD 2025"
Apr 24, 2025 17:00 JST
Fujitsu launches new company 1FINITY to strengthen network products business
Apr 24, 2025 16:24 JST
MHIEC Completes Renovation of Core Facilities for Arita Municipal Recycle Plaza in Saga Prefecture
Apr 24, 2025 15:01 JST
NEC invests in U.S.-based "Geodesic Alliance Fund" aiming to strengthen economic security business
Apr 24, 2025 10:23 JST
MHI Thermal Systems Wins German Red Dot Design Award 2025
Apr 24, 2025 10:11 JST
ULVAC Develops Dilution Refrigerator for Quantum Computers
Apr 24, 2025 09:30 JST
Fujitsu expands strategic collaboration with Supermicro to offer total generative AI platform
Apr 23, 2025 11:55 JST
Furuya Metal and Asahi Kasei Embark on Demonstration Trial Regarding Recycling of Metals for Chlor-alkali Electrolysis Cells and Electrodes
Apr 23, 2025 11:00 JST
A Decade of Olympus India's Commitment to Community Welfare
Apr 22, 2025 13:00 JST
Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer
Apr 22, 2025 11:37 JST
Fujitsu Kozuchi AI technologies assist AKOS AI in delivering solutions for EU AI compliance
Apr 18, 2025 17:41 JST
Leqembi (lecanemab) is the First Medicine that Slows Progression of Early Alzheimer's Disease to be Authorized in the European Union
Apr 18, 2025 16:52 JST
Hitachi Industrial Equipment Systems Launches Next-Generation Inverter System to Support Stable, Resilient Power Grids
Apr 18, 2025 16:46 JST
MHIEC Receives Order from the Bureau of Sewerage of the Tokyo Metropolitan Government for Rebuilding of Sewage Sludge Incineration Facility
Apr 17, 2025 14:44 JST
Fujitsu collaboration with Supermicro and Nidec to reduce data center energy consumption
Apr 17, 2025 10:32 JST
More Latest Release >>