TOP PAGE
ENGLISH
JAPANESE
|
CONNECT WITH US:
Home
About
Services
Contact
Log in
*
Home
Press release
May 25, 2022 18:00 JST
Source:
Science and Technology of Advanced Materials
Machine learning speeds up search for new sustainable materials
A model that rapidly searches through large numbers of materials could find sustainable alternatives to existing composites.
TSUKUBA, Japan, May 25, 2022 - (ACN Newswire) - Researchers from Konica Minolta and the Nara Institute of Science and Technology in Japan have developed a machine learning method to identify sustainable alternatives for composite materials. Their findings were published in the journal Science and Technology of Advanced Materials: Methods.
Researchers are looking for sustainable options, such as recyclable materials or biomass, to substitute the constituent materials in composites which are used in various applications including electrical and information technologies.
Composite materials are compounds made of two or more constituent materials. Due to the complex nature of the interactions between the different components, their performance can greatly exceed that of single materials. Composite materials, such as fibre-reinforced plastics, are very important for a wide range of industries and applications, including electrical and information technologies.
In recent years, there has been increasing demand for more environmentally sustainable materials that help reduce industrial waste and plastic use. One way to achieve this is to substitute the constituent materials in composites with recyclable materials or biomass. However, this can reduce performance compared to the original material, not only due to the features of the individual constituent materials, such as their physicochemical properties, but also due to the interactions between the constituents.
"Finding a new composite material that achieves the same performance as the original using human experience and intuition alone takes a very long time because you have to evaluate countless materials while also taking into account the interactions between them," explains Michihiro Okuyama, assistant manager at Konica Minolta, Inc.
Machine learning offers a potential solution to this problem. Scientists have proposed several machine learning methods to conduct rapid searches among a large number of materials, based on the relationship between the materials' features and performance. However, in many cases the properties of the constituent materials are unknown, making these types of predictive searches difficult.
To overcome this limitation, the researchers developed a new type of machine learning method for finding alternative materials. A key advantage of the new method is that it can quantitatively evaluate the interactions among the component materials to reveal how much they contribute to the overall performance of the composite. The method then searches for replacement constituents with similar performance to the original material.
The researchers tested their method by searching for alternative constituent materials for a composite consisting of three materials - resin, a filler and an additive. They experimentally evaluated the performance of the substitute materials identified by machine learning and found that they were similar to the original material, proving that the model works.
"In developing alternatives, that make up composite materials, our new machine learning method removes the need to test large numbers of candidates by trial and error, saving both time and money." says Okuyama.
The method could be used to quickly and efficiently identify sustainable substitutes for composite materials, reducing plastic use and encouraging the use of biomass or renewable materials.
Further information
Michihiro Okuyama
KONICA MINOLTA, INC.
Email:
michihiro.okuyama@konicaminolta.com
About Science and Technology of Advanced Materials: Methods (STAM Methods)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr. Masanobu Naito
STAM Methods Publishing Director
Email:
NAITO.Masanobu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Chemicals, Spec.Chem, Science & Nanotech, Artificial Intel [AI]
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Related Press Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>
Latest Press Release
NEC DGDF Headquarters relocates to Zurich to accelerate growth and enhance management globally
Apr 28, 2025 16:03 JST
NEC achieves Japan's longest terrestrial wireless optical communication over 10 km
Apr 25, 2025 17:50 JST
Olympus Appoints New CEO
Apr 25, 2025 15:30 JST
DENSO Announces Year-End Financial Results
Apr 25, 2025 12:17 JST
DENSO and DELPHY Sign Memorandum of Understanding to Develop Data-Driven Smart Horticulture
Apr 24, 2025 18:43 JST
MyJCB App Wins "iF DESIGN AWARD 2025"
Apr 24, 2025 17:00 JST
Fujitsu launches new company 1FINITY to strengthen network products business
Apr 24, 2025 16:24 JST
MHIEC Completes Renovation of Core Facilities for Arita Municipal Recycle Plaza in Saga Prefecture
Apr 24, 2025 15:01 JST
NEC invests in U.S.-based "Geodesic Alliance Fund" aiming to strengthen economic security business
Apr 24, 2025 10:23 JST
MHI Thermal Systems Wins German Red Dot Design Award 2025
Apr 24, 2025 10:11 JST
ULVAC Develops Dilution Refrigerator for Quantum Computers
Apr 24, 2025 09:30 JST
Fujitsu expands strategic collaboration with Supermicro to offer total generative AI platform
Apr 23, 2025 11:55 JST
Furuya Metal and Asahi Kasei Embark on Demonstration Trial Regarding Recycling of Metals for Chlor-alkali Electrolysis Cells and Electrodes
Apr 23, 2025 11:00 JST
A Decade of Olympus India's Commitment to Community Welfare
Apr 22, 2025 13:00 JST
Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer
Apr 22, 2025 11:37 JST
Fujitsu Kozuchi AI technologies assist AKOS AI in delivering solutions for EU AI compliance
Apr 18, 2025 17:41 JST
Leqembi (lecanemab) is the First Medicine that Slows Progression of Early Alzheimer's Disease to be Authorized in the European Union
Apr 18, 2025 16:52 JST
Hitachi Industrial Equipment Systems Launches Next-Generation Inverter System to Support Stable, Resilient Power Grids
Apr 18, 2025 16:46 JST
MHIEC Receives Order from the Bureau of Sewerage of the Tokyo Metropolitan Government for Rebuilding of Sewage Sludge Incineration Facility
Apr 17, 2025 14:44 JST
Fujitsu collaboration with Supermicro and Nidec to reduce data center energy consumption
Apr 17, 2025 10:32 JST
More Latest Release >>