TOP PAGE
ENGLISH
JAPANESE
|
CONNECT WITH US:
Home
About
Services
Contact
Log in
*
Home
Press release
Sep 30, 2021 07:00 JST
Source:
Science and Technology of Advanced Materials
Improving machine learning for materials design
A quick, cost-effective approach improves the accuracy with which machine learning models can predict the properties of new materials.
TSUKUBA, Japan, Sep 30, 2021 - (ACN Newswire) - A new approach can train a machine learning model to predict the properties of a material using only data obtained through simple measurements, saving time and money compared with those currently used. It was designed by researchers at Japan's National Institute for Materials Science (NIMS), Asahi KASEI Corporation, Mitsubishi Chemical Corporation, Mitsui Chemicals, and Sumitomo Chemical Co and reported in the journal Science and Technology of Advanced Materials: Methods.
The new approach can predict difficult-to-measure experimental data such as tensile modulus using easy-to-measure experimental data like X-ray diffraction. It further helps design new materials or repurpose already known ones.
"Machine learning is a powerful tool for predicting the composition of elements and process needed to fabricate a material with specific properties," explains Ryo Tamura, a senior researcher at NIMS who specializes in the field of materials informatics.
A tremendous amount of data is usually needed to train machine learning models for this purpose. Two kinds of data are used. Controllable descriptors are data that can be chosen without making a material, such as the chemical elements and processes used to synthesize it. But uncontrollable descriptors, like X-ray diffraction data, can only be obtained by making the material and conducting experiments on it.
"We developed an effective experimental design method to more accurately predict material properties using descriptors that cannot be controlled," says Tamura.
The approach involves the examination of a dataset of controllable descriptors to choose the best material with the target properties to use for improving the model's accuracy. In this case, the scientists interrogated a database of 75 types of polypropylenes to select a candidate with specific mechanical properties.
They then selected the material and extracted some of its uncontrollable descriptors, for example, its X-ray diffraction data and mechanical properties.
This data was added to the present dataset to better train a machine learning model employing special algorithms to predict a material's properties using only uncontrollable descriptors.
"Our experimental design can be used to predict difficult-to-measure experimental data using easy-to-measure data, accelerating our ability to design new materials or to repurpose already known ones, while reducing the costs," says Tamura. The prediction method can also help improve understanding of how a material's structure affects specific properties.
The team is currently working on further optimizing their approach in collaboration with chemical manufacturers in Japan.
Further information
Ryo Tamura
National Institute for Materials Science (NIMS)
Email:
tamura.ryo@nims.go.jp
About Science and Technology of Advanced Materials: Methods (STAM Methods)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr. Yoshikazu Shinohara
STAM Methods Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Related Press Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>
Latest Press Release
NEC DGDF Headquarters relocates to Zurich to accelerate growth and enhance management globally
Apr 28, 2025 16:03 JST
NEC achieves Japan's longest terrestrial wireless optical communication over 10 km
Apr 25, 2025 17:50 JST
Olympus Appoints New CEO
Apr 25, 2025 15:30 JST
DENSO Announces Year-End Financial Results
Apr 25, 2025 12:17 JST
DENSO and DELPHY Sign Memorandum of Understanding to Develop Data-Driven Smart Horticulture
Apr 24, 2025 18:43 JST
MyJCB App Wins "iF DESIGN AWARD 2025"
Apr 24, 2025 17:00 JST
Fujitsu launches new company 1FINITY to strengthen network products business
Apr 24, 2025 16:24 JST
MHIEC Completes Renovation of Core Facilities for Arita Municipal Recycle Plaza in Saga Prefecture
Apr 24, 2025 15:01 JST
NEC invests in U.S.-based "Geodesic Alliance Fund" aiming to strengthen economic security business
Apr 24, 2025 10:23 JST
MHI Thermal Systems Wins German Red Dot Design Award 2025
Apr 24, 2025 10:11 JST
ULVAC Develops Dilution Refrigerator for Quantum Computers
Apr 24, 2025 09:30 JST
Fujitsu expands strategic collaboration with Supermicro to offer total generative AI platform
Apr 23, 2025 11:55 JST
Furuya Metal and Asahi Kasei Embark on Demonstration Trial Regarding Recycling of Metals for Chlor-alkali Electrolysis Cells and Electrodes
Apr 23, 2025 11:00 JST
A Decade of Olympus India's Commitment to Community Welfare
Apr 22, 2025 13:00 JST
Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer
Apr 22, 2025 11:37 JST
Fujitsu Kozuchi AI technologies assist AKOS AI in delivering solutions for EU AI compliance
Apr 18, 2025 17:41 JST
Leqembi (lecanemab) is the First Medicine that Slows Progression of Early Alzheimer's Disease to be Authorized in the European Union
Apr 18, 2025 16:52 JST
Hitachi Industrial Equipment Systems Launches Next-Generation Inverter System to Support Stable, Resilient Power Grids
Apr 18, 2025 16:46 JST
MHIEC Receives Order from the Bureau of Sewerage of the Tokyo Metropolitan Government for Rebuilding of Sewage Sludge Incineration Facility
Apr 17, 2025 14:44 JST
Fujitsu collaboration with Supermicro and Nidec to reduce data center energy consumption
Apr 17, 2025 10:32 JST
More Latest Release >>