TOP PAGE
ENGLISH
JAPANESE
|
CONNECT WITH US:
Home
About
Services
Contact
Log in
*
Home
Press release
Sep 30, 2021 07:00 JST
Source:
Science and Technology of Advanced Materials
Improving machine learning for materials design
A quick, cost-effective approach improves the accuracy with which machine learning models can predict the properties of new materials.
TSUKUBA, Japan, Sep 30, 2021 - (ACN Newswire) - A new approach can train a machine learning model to predict the properties of a material using only data obtained through simple measurements, saving time and money compared with those currently used. It was designed by researchers at Japan's National Institute for Materials Science (NIMS), Asahi KASEI Corporation, Mitsubishi Chemical Corporation, Mitsui Chemicals, and Sumitomo Chemical Co and reported in the journal Science and Technology of Advanced Materials: Methods.
The new approach can predict difficult-to-measure experimental data such as tensile modulus using easy-to-measure experimental data like X-ray diffraction. It further helps design new materials or repurpose already known ones.
"Machine learning is a powerful tool for predicting the composition of elements and process needed to fabricate a material with specific properties," explains Ryo Tamura, a senior researcher at NIMS who specializes in the field of materials informatics.
A tremendous amount of data is usually needed to train machine learning models for this purpose. Two kinds of data are used. Controllable descriptors are data that can be chosen without making a material, such as the chemical elements and processes used to synthesize it. But uncontrollable descriptors, like X-ray diffraction data, can only be obtained by making the material and conducting experiments on it.
"We developed an effective experimental design method to more accurately predict material properties using descriptors that cannot be controlled," says Tamura.
The approach involves the examination of a dataset of controllable descriptors to choose the best material with the target properties to use for improving the model's accuracy. In this case, the scientists interrogated a database of 75 types of polypropylenes to select a candidate with specific mechanical properties.
They then selected the material and extracted some of its uncontrollable descriptors, for example, its X-ray diffraction data and mechanical properties.
This data was added to the present dataset to better train a machine learning model employing special algorithms to predict a material's properties using only uncontrollable descriptors.
"Our experimental design can be used to predict difficult-to-measure experimental data using easy-to-measure data, accelerating our ability to design new materials or to repurpose already known ones, while reducing the costs," says Tamura. The prediction method can also help improve understanding of how a material's structure affects specific properties.
The team is currently working on further optimizing their approach in collaboration with chemical manufacturers in Japan.
Further information
Ryo Tamura
National Institute for Materials Science (NIMS)
Email:
tamura.ryo@nims.go.jp
About Science and Technology of Advanced Materials: Methods (STAM Methods)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr. Yoshikazu Shinohara
STAM Methods Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Related Press Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>
Latest Press Release
Lexus Presents the World Premiere of the New "RZ"
Mar 12, 2025 17:45 JST
MHIET Achieves Rated Operation of a 6-Cylinder 500kW-class Hydrogen Engine Generator Set
Mar 12, 2025 14:11 JST
MOL and Fujitsu leverage AI for efficient crew replacement planning
Mar 12, 2025 13:53 JST
JCB Now Available on Google Play in Thailand, Indonesia, Vietnam, Philippines, and Hong Kong
Mar 12, 2025 11:00 JST
TANAKA PRECIOUS METAL TECHNOLOGIES Develops Miniaturized Micro Profile, a Next-Generation Contact tape for Fifth-Generation Signal Relays
Mar 12, 2025 11:00 JST
JCB Announced Premier Sponsorship for the 10th Edition of Sakura 2025 at Singapore's Gardens by the Bay
Mar 11, 2025 18:00 JST
Hitachi Energy invests additional $250 million USD to address global transformer shortage
Mar 11, 2025 17:49 JST
Eisai Recognized as "2025 Kenko Investment for Health" for the First Time and Certified as "Outstanding Organization Of Kenko Investment for Health Program (White 500)" for the Sixth Time
Mar 10, 2025 20:24 JST
CEPI funds Nagasaki University to develop innovative vaccines using Nanoball platform and NEC's AI
Mar 10, 2025 12:10 JST
Japan's Telecommunications Carriers Enhance Disaster Response with On-site Training for Joint Use of Marine Vessels
Mar 07, 2025 16:24 JST
NEC improves the energy efficiency and floor space density of 5G Mobile Core systems
Mar 06, 2025 13:20 JST
Unmanned Aerial Vehicles Being Developed by MHI Used in Demonstration of Automated Transport and Unloading of Heavy Cargo in Disaster Areas
Mar 05, 2025 16:11 JST
Eisai: Update on the Co-Promotion of the Oral Antifungal Agent Nailin Capsules 100mg in Japan
Mar 05, 2025 09:09 JST
MHI-MS Completes Domestic Development of Vehicle Transport Robot
Mar 04, 2025 19:39 JST
Eisai Receives Regulatory Review Outcome for Lecanemab as a Treatment for Early Alzheimer's Disease in Australia
Mar 04, 2025 17:22 JST
Prideone Entertainment announces concept for post-war film to mark 80th anniversary of the end of World War II
Mar 04, 2025 16:00 JST
NTT and DOCOMO Successfully Demonstrates On-Demand Unified Control of Computing Services Through Network and Service Integration
Mar 03, 2025 20:25 JST
Space Compass and NTT DOCOMO Successfully Demonstrate Data Connectivity to 4G Devices via HAPS at 20 km Above Kenya
Mar 03, 2025 20:14 JST
TOPPAN and DOCOMO Agree to Innovate Next-Generation 6G Services Using FEEL TECH Communication Technology
Mar 03, 2025 18:32 JST
Rakuten Mobile Partners with Fujitsu to Accelerate 5G Network Expansion
Mar 03, 2025 18:23 JST
More Latest Release >>