TOP PAGE
ENGLISH
JAPANESE
|
CONNECT WITH US:
Home
About
Services
Contact
Log in
*
Home
Press release
Jul 22, 2021 08:00 JST
Source:
Science and Technology of Advanced Materials
Stimulating blood vessel formation with magnets
Magnetic field could boost blood vessel growth to regenerate damaged tissue.
TSUKUBA, Japan, Jul 22, 2021 - (ACN Newswire) - Magnetic field can be used to stimulate blood vessel growth, according to a study published in the journal Science and Technology of Advanced Materials. The findings, by researchers at the Tecnico Lisboa and NOVA School of Science and Technology in Portugal, could lead to new treatments for cancers and help regenerate tissues that have lost their blood supply.
"Researchers have found it challenging to develop functional, vascularized tissue that can be implanted or used to regenerate damaged blood vessels," says Frederico Ferreira, a bioengineer at Tecnico Lisboa's Institute for Biosciences and Bioengineering. "We developed a promising cell therapy alternative that can non-invasively stimulate blood vessel formation or regeneration through the application of an external low-intensity magnetic field."
Human-donated mesenchymal stromal cells were placed on PVA or gelatin hydrogels containing iron oxide nanoparticles. Applying a magnetic field to the gelatin hydrogel triggered the release of VEGF-A. This was used to treat endothelial cells, stimulating blood vessel formation.
The researchers worked with human mesenchymal stromal cells from bone marrow. These cells can change into different cell types, and also secrete a protein called VEGF-A that stimulates blood vessel formation.
Ana Carina Manjua and Carla Portugal, at the Research Centre LAQV at the NOVA School of Science and Technology, developed two hydrogel supports, made from polyvinyl alcohol (PVA) or gelatin, both containing iron oxide nanoparticles. Cells were cultured on the hydrogels and exposed to a low-intensity magnetic field for 24 hours.
The cells on the PVA hydrogel produced less VEGF-A after the magnetic treatment. But the cells on the gelatin hydrogel produced more. Subsequent lab tests showed that this VEGF-A rich extracts, taken from the cultures on magnet-stimulated gelatin hydrogel, improved the ability of human vascular endothelial cells to sprout into branching blood vessel networks.
Endothelial cells were then placed onto a culture dish with a gap separating them. The conditioned media from magnet-treated mesenchymal stromal cells from the gelatin hydrogel were added to the endothelial cells, moving to close the gap between them in 20 hours. This was significantly faster than the 30 hours they needed when they had not received magnetic treatment. Placing a magnet directly below the dish triggered the mesenchymal stromal cells to close the gap in just four hours.
Finally, VEGF-A extracts produced by magnet-treated mesenchymal stromal cells on gelatin increased blood vessel formation in a chick embryo, although further research is needed to confirm these results.
More work is needed to understand what happens at the molecular level when a magnetic field is applied to the cells. But the researchers say gelatin hydrogels containing iron oxide nanoparticles and mesenchymal stromal cells could one day be applied to damaged blood vessels and then exposed to a short magnetic treatment to heal them.
The team suggests that magnet-treated cells on PVA, which produce less of the growth factor, could be used to slow down blood vessel growth to limit the expansion of cancer cells.
Further information
Frederico Castelo Ferreira
Universidade de Lisboa
Email:
frederico.ferreira@ist.utl.pt
Carla Portugal
Universidade Nova de Lisboa
Email:
cmp@fct.unl.pt
Ana Carina Baeta Manjua
Universidade de Lisboa
Email:
carina.manjua@tecnico.ulisboa.pt
About Science and Technology of Advanced Materials Journal
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials. Website:
https://www.tandfonline.com/toc/tsta20/current
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech, BioTech
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Related Press Release
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
More Press release >>
Latest Press Release
Mazda Production and Sales Results for December 2024 and for January through December 2024
Jan 30, 2025 16:44 JST
Lexus Announces Global Sales Results for 2024
Jan 30, 2025 15:52 JST
MHI Thermal Systems Receives 2024 Agency for Natural Resources and Energy Commissioner's Award from ECCJ for TEJ35AM Electric-Driven Transport Refrigeration Unit Integrated with Isuzu's ELF EV
Jan 30, 2025 14:13 JST
Mitsubishi Shipbuilding Receives Order for an Offshore Patrol Vessel from the Indonesian Maritime Security Agency
Jan 30, 2025 12:35 JST
Fujitsu and Asepeyo collaborate to modernise the management of occupational benefits and contingencies
Jan 30, 2025 11:56 JST
Suzuki, Daihatsu, and Toyota Decide on the Release Schedule for Mini-Commercial Van Electric Vehicles
Jan 30, 2025 10:56 JST
A Quantum Leap into Uplisting: Spectral Capital and the Next Generation of Computing
Jan 29, 2025 22:47 JST
NEC combines video analysis technology with generative AI to generate advice for improving work quality
Jan 29, 2025 10:08 JST
Japan's Telecommunications Carriers Strengthen Disaster Response by Conducting Joint Training for Shared Refueling Stations
Jan 28, 2025 17:39 JST
FDA Approves LEQEMBI (lecanemab-irmb) IV Maintenance Dosing for the Treatment of Early Alzheimer's Disease
Jan 28, 2025 09:46 JST
Ogier's milestone Monte win crowns TOYOTA GAZOO Racing one-two
Jan 27, 2025 17:24 JST
Anime Tokyo Station: Let's Enjoy together!! History of Anime Series "OSHI NO KO"
Jan 27, 2025 13:00 JST
hootfolio, Inc., a Provider of Causal Analysis Technology, Launches Business Development
Jan 27, 2025 12:01 JST
Sustainable Shared Transport and Fujitsu launch open platform for joint transportation and delivery in Japan, enhancing logistics efficiency across industries
Jan 27, 2025 10:53 JST
DOCOMO to Exhibit at MWC Barcelona 2025, World's Largest Connectivity Exhibition
Jan 24, 2025 17:39 JST
Hitachi Launches Food Quality Visualization Solution with Time-Temperature Sensing Ink
Jan 24, 2025 12:40 JST
Mitsubishi Heavy Industries Aero Engines and Rolls-Royce Celebrate 20 Years of Collaboration
Jan 24, 2025 10:38 JST
World's First Successful Transmission of Huge Volume Mission Data Using 1.5 micron Optical Inter-Satellite Communication
Jan 24, 2025 09:19 JST
TANAKA PRECIOUS METAL TECHNOLOGIES Develops AgSn TLP Sheet, a Sheet-type Bonding Material for Power Semiconductors
Jan 23, 2025 11:00 JST
MHI Receives Order for 3 New Series Trainsets (12 Cars) for Seibu Railway's Yamaguchi Line
Jan 22, 2025 17:27 JST
More Latest Release >>